Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngưu Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 21:59

\(B=\dfrac{2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

Để B nguyên thì \(\sqrt{x}-3\in\left\{1;-1;5\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;2;8\right\}\)

hay \(x\in\left\{16;4;64\right\}\)

 

Trang Nguyễn
Xem chi tiết
Nguyễn Minh Anh
6 tháng 12 2021 lúc 9:13

Để B có nghĩa thì x ≥ 0 và x ≠ 1

\(B=\dfrac{5}{\sqrt{x}-1}\) nguyên khi \(\sqrt{x}-1\) thuộc ước của 5

⇒ \(\sqrt{x}-1\) ∈ \(\left\{1,-1,5,-5\right\}\)

\(TH1:\sqrt{x}-1=1\Rightarrow x=4\)

\(TH2:\sqrt{x}-1=-1\Rightarrow x=0\)

\(TH3:\sqrt{x}-1=5\Rightarrow x=36\)

\(TH4:\sqrt{x}-1=-5\Rightarrow x=-4\) (loại vì x ≥ 0)

Vậy \(x\in\left\{0,4,36\right\}\)

 

Nguyễn Hoàng Minh
6 tháng 12 2021 lúc 9:13

\(ĐK:x\ge0;x\ne1\\ B\in Z\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)=\left\{-1;1;5\right\}\left(\sqrt{x}-1\ge-1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;2;6\right\}\\ \Leftrightarrow x\in\left\{0;4;36\right\}\left(tm\right)\)

Sách Giáo Khoa
Xem chi tiết
Trịnh Ánh Ngọc
10 tháng 6 2017 lúc 11:05

\(A=\dfrac{\sqrt{x}-3}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2.\)

Suy ra \(x\) là số chính phương lẻ.

\(x< 30\) nên \(x\in\left\{1^2;3^2;5^2\right\}\)hay \(x\in\left\{1;9;25\right\}.\)

Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 12 2023 lúc 10:36

a: Sửa đề: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne9\end{matrix}\right.\)

Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3+4⋮\sqrt{x}-3\)

=>\(4⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)

=>\(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)

=>\(x\in\left\{16;4;25;1;49\right\}\)

b: loading...

loading...

Minh Anh Vũ
Xem chi tiết
missing you =
30 tháng 7 2021 lúc 17:14

a, đk: \(x\ge0,x\ne9,x\ne4\)

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2-\sqrt{x}}{-\left(\sqrt{x}-3\right)\left(2-\sqrt{x}\right)}=\dfrac{-1}{\sqrt{x}-3}\)

b,\(Q< -1=>\dfrac{-1}{\sqrt{x}-3}+1< 0< =>\dfrac{-1+\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(< =>\dfrac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)

\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\\\left[{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\end{matrix}\right.\)\(< =>\left[{}\begin{matrix}\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\end{matrix}\right.\)\(< =>9< x< 16\)

c, \(=>2Q=\dfrac{-2}{\sqrt{x}-3}=1+\dfrac{1}{\sqrt{x}-3}\in Z\)

\(< =>\sqrt{x}-3\inƯ\left(1\right)=\left\{\pm1\right\}\)\(=>x\in\left\{16;4\right\}\)(loại 4)

=>x=16

Nhan Thanh
30 tháng 7 2021 lúc 18:12

a) \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-3\dfrac{\sqrt{x}-1}{x-5\sqrt{x}+6}\) 

Ta có \(x-5\sqrt{x}+6=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>9\\x>2\end{matrix}\right.\) \(\Leftrightarrow x>9\)

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-3\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(x-4\right)-\left(x-2\sqrt{x}-3\right)-\left(3\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-1}{\left(\sqrt{x}-3\right)}=\dfrac{1}{3-\sqrt{x}}\)

b) \(Q< -1\Leftrightarrow\dfrac{1}{3-\sqrt{x}}< -1\) \(\Leftrightarrow\dfrac{1}{3-\sqrt{x}}+1< 0\) \(\Leftrightarrow\dfrac{4-\sqrt{x}}{3-\sqrt{x}}< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-\sqrt{x}>0\\3-\sqrt{x}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}4-\sqrt{x}< 0\\3-\sqrt{x}>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow9< x< 16\)

Vậy để \(Q< -1\) thì \(S=\left\{x/9< x< 16\right\}\)

c) \(2Q\in Z\Leftrightarrow\dfrac{2}{3-\sqrt{x}}\in Z\)

\(\Rightarrow3-\sqrt{x}\inƯ\left(2\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}3-\sqrt{x}=2\\3-\sqrt{x}=-2\\3-\sqrt{x}=1\\3-\sqrt{x}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=25\\x=4\\x=16\end{matrix}\right.\)

Kết hợp với ĐKXĐ,ta có để \(2Q\in Z\) thì \(x\in\left\{16;25\right\}\)

 

Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 0:25

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{9;4\right\}\end{matrix}\right.\)

Ta có: \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4-x+2\sqrt{x}+2-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-1}{\sqrt{x}-3}\)

c) Để 2Q là số nguyên thì \(-2⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1\right\}\)

Zek Tim
Xem chi tiết
Khánh San
Xem chi tiết
Lấp La Lấp Lánh
17 tháng 9 2021 lúc 13:56

a) \(B=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\left(đk:x\ge0,x\ne4\right)\)

\(=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}.\dfrac{x-4}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}\)

c) \(C=A\left(B-2\right)=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\left(\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}-2\right)\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}.\dfrac{-2}{\sqrt{x}+2}=\dfrac{-2}{\sqrt{x}-2}\in Z\)

\(\Rightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{1;-1;2-2\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0\right\}\)

\(\Rightarrow x\in\left\{0;1;9;16\right\}\)

 

Chóii Changg
Xem chi tiết
Anh Nguyễn
Xem chi tiết
Minh Hiếu
12 tháng 10 2021 lúc 20:04

\(A=\) \(\dfrac{x+2}{x-5}\)

\(=\dfrac{\left(x-5\right)+7}{x-5}\)

\(=1+\dfrac{7}{x-5}\)

để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5

⇒x-5∈\(\left(^+_-1,^+_-7\right)\)

Còn lại thì bạn tự tính nha