\(A=\dfrac{\sqrt{x}-3}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2.\)
Suy ra \(x\) là số chính phương lẻ.
Vì \(x< 30\) nên \(x\in\left\{1^2;3^2;5^2\right\}\)hay \(x\in\left\{1;9;25\right\}.\)
\(A=\dfrac{\sqrt{x}-3}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2.\)
Suy ra \(x\) là số chính phương lẻ.
Vì \(x< 30\) nên \(x\in\left\{1^2;3^2;5^2\right\}\)hay \(x\in\left\{1;9;25\right\}.\)
Cho \(B=\dfrac{5}{\sqrt{x}-1}\). Tìm \(x\in\mathbb{Z}\) để B có giá trị nguyên ?
Cho A = \(\dfrac{\sqrt{x}-3}{2}\). Tìm x ∈ Z và x < 30 để A có giá trị nguyên.
Cho \(A=\sqrt{x+2}+\dfrac{3}{11};B=\dfrac{5}{17}-3\sqrt{x-5}\)
a) Tìm giá trị nhỏ nhất của A
b) Tìm giá trị lớn nhất của B
tìm các số nguyên x để các biểu thức sau có giá trị nguyên: a)A =7/2X-3 b) B= 2X-1/X-1 c) C=5/x^2 - 3
cho M=\(\dfrac{\sqrt{x}-1}{2}\). Tìm x\(\in\)Z và x< 50 để M có giá trị nguyên
Bài 1 : Kí hiệu [x] là số nguyên lớn nhất không vượt qua x. Tìm [x] biết :
a) x = \(\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\) ( n dấu căn )
b) x = \(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+...+\left[\sqrt{100}\right]\)
Bài 2 : Tìm x để A có giá trị nguyên:
a) A = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) A = \(\dfrac{\sqrt{x}+3}{2\sqrt{x}+1}\)
c) A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) với \(x\) thuộc Z
1. không tính so sánh \(\sqrt[]{50+2}\) với \(\sqrt{50}+\sqrt{2}\)
2.cho A =\(\dfrac{5}{\sqrt{x}-3}\) tìm x thuộc Z để A có giá trị nguyên
3.Biểu diễn \(-\sqrt{3}\) trên trục số
Cho A=\(\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)(x lớn hơn hoặc bằng 0)
a, Tìm x thuộc Z để A thuộc Z
b, Tìm x thuộc R để A thuộc Z
11.7*. Cho \(B=\dfrac{5}{\sqrt{x}-1}\). Tìm \(x\in Z\) để \(B\) có giá trị nguyên.