\(\dfrac{12x+1}{12}>=\dfrac{9x+3}{3}-\dfrac{8x+1}{4}\)
giải các bất phương trình sau
2x - 3 > 3 ( x - 2 )
\(\dfrac{12x+1}{12}\)≤\(\dfrac{9x+1}{3}\)-\(\dfrac{8x+1}{4}\)
a) 2x - 3 > 3(x - 2)
⇔ 2x - 3 > 3x - 6
⇔ 2x - 3x > -6 + 3
⇔ -x > -3
⇔ x < 3
Vậy S = {x | x < 3}
b) (12x + 1)/12 ≤ (9x + 1)/3 - (8x + 1)/4
⇔ 12x + 1 ≤ 4(9x + 1) - 3(8x + 1)
⇔ 12x + 1 ≤ 36x + 4 - 24x - 3
⇔ 12x - 36x + 24x ≤ 4 - 3 - 1
⇔ 0x ≤ 0 (luôn đúng với mọi x)
Vậy S = R
a: =>2x-3>3x-6
=>-x>-3
=>x<3
b: =>12x+1<=36x+4-24x-3
=>12x+1<=12x+1
=>0x<=0(luôn đúng)
a) \(2x-3>3\left(x-2\right)\)
\(\Leftrightarrow2x-3>3x-6\)
\(\Leftrightarrow2x-3x>-6+3\)
\(\Leftrightarrow-x>-3\)
\(\Leftrightarrow x< 3\)
Vậy bất phương trình có nghiệm là \(x< 3\)
b) \(\dfrac{12x+1}{12}\le\dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)
\(\Leftrightarrow\dfrac{12x+1}{12}\le\dfrac{\left(9x+1\right).4}{3.4}-\dfrac{\left(8x+1\right)3}{4.3}\)
\(\Leftrightarrow12x+1\le36x+4-24x-3\)
\(\Leftrightarrow12x-36x+24x\le4-3-1\)
\(\Leftrightarrow0x\le0\)
Vậy bất phương trình vô nghiệm
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
g) \(\dfrac{12x+1}{12}\) ≥ \(\dfrac{9x+3}{3}\) - \(\dfrac{8x+1}{4}\)
h) \(\dfrac{x-1}{2}\) + \(\dfrac{2-x}{3}\) ≤ \(\dfrac{3x-3}{4}\)
i) (2x - 3)2 > x(4x - 3)
Ở câu (h) mình quên gạch chân phân số, bạn thông cảm nha <3
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
g) \(\dfrac{12x+1}{12}\) ≥ \(\dfrac{9x+3}{3}\) - \(\dfrac{8x+1}{4}\)
h) \(\dfrac{x-1}{2}\) + \(\dfrac{2-x}{3}\) ≤ \(\dfrac{3x-3}{4}\)
i) (2x-3)2 > x(4x - 3)
Giúp mình giải chi tiết với
g: =>12x+1>=36x+12-24x-3
=>12x+1>=12x+9(loại)
h: =>6(x-1)+4(2-x)<=3(3x-3)
=>6x-6+8-4x<=9x-9
=>2x+2<=9x-9
=>-7x<=-11
=>x>=11/7
i: =>4x^2-12x+9>4x^2-3x
=>-12x+9>-3x
=>-9x>-9
=>x<1
Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: \(\dfrac{12x+1}{12}\le\dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)
\(\dfrac{12x+1}{12}\le\dfrac{4\left(9x+1\right)}{12}-\dfrac{3\left(8x+1\right)}{12}\)
\(\Leftrightarrow\)\(12x+1\le45x+4-32x+3\)
\(\Leftrightarrow12x+1\le13x+7\)
\(\Leftrightarrow12x-13x\le7-1\)
\(\Leftrightarrow-x\le6\)
\(\Leftrightarrow x\ge-6\)
Giải bất phương tình sau, rồi biểu diễn tập nghiệm trên trục số:
a/(2x-1)2+7>x(4x+3)+1
b/ \(\dfrac{12x+1}{12}\ge\dfrac{9x+3}{3}-\dfrac{8x+1}{4}\)
giúp mik tl câu này vs mik đang cần gấp
a: =>4x^2-4x+1+7>4x^2+3x+1
=>-4x+8>3x+1
=>-7x>-7
=>x<1
b: \(\Leftrightarrow12x+1>=36x+12-24x-3\)
=>1>=9(loại)
23) \(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}=\dfrac{1}{9}\)
24) \(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{8}\)
25) \(\dfrac{x^2+2x+2}{x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)
24:
\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=8\left(x+6\right)-8\left(x+2\right)\)
\(\Leftrightarrow x^2+8x+12=8x+48-8x-16=32\)
=>(x+10)(x-2)=0
=>x=-10 hoặc x=2
25: \(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)
\(\Leftrightarrow x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)
\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{4}{x+4}=\dfrac{2}{x+2}+\dfrac{3}{x+3}\)
\(\Leftrightarrow x+5=0\)
hay x=-5
2.Dùng định nghĩa hai phân thức bằng nhau,hãy tìm đa thức A trong đảng thức sau
a,\(\dfrac{A}{3x+1}\)=\(\dfrac{9x^2-6x-1}{3x-1}\) b,\(\dfrac{2x-3}{A}\)=\(\dfrac{6x^2-7x-3}{12x+4}\)
c,\(\dfrac{12x+4}{4x+28}\)=\(\dfrac{A}{2x^2+8x-21}\) d,\(\dfrac{x^2+4x+4}{x^2-4}\)=\(\dfrac{x^2+3x+2}{A}\)
d: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{A}\)
hay A=x-2
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
\(\dfrac{1}{27}+a^3\\ 8x^3+27y^3\\ \dfrac{1}{8}x^3+8y^3\\ x^6+1\\ x^9+1\\ x^3-64\\ x^3-125\\ 8x^6-27y^3\\ \dfrac{1}{64}x^6-125y^3\\ \dfrac{1}{8}x^3-8\\ x^3+6x^2+12x+8\\ x^3+9x^2+27x+27\) Giúp mình với mình cần gấp ;-;
1) \(\dfrac{1}{27}+a^3=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)
2) \(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
3) \(=\left(\dfrac{1}{2}x+2y\right)\left(\dfrac{1}{4}x-xy+4y^2\right)\)
4) \(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
5) \(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
6) \(=\left(x-4\right)\left(x^2+4x+16\right)\)
7) \(=\left(x-5\right)\left(x^2+5x+25\right)\)
8) \(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
9) \(=\left(\dfrac{1}{4}x^2-5y\right)\left(\dfrac{1}{16}x^4+\dfrac{5}{4}x^2y+25y^2\right)\)
10) \(=\left(\dfrac{1}{2}x-2\right)\left(\dfrac{1}{4}x^2+x+4\right)\)
11) \(=\left(x+2\right)^3\)
12) \(=\left(x+3\right)^3\)