a) 2x - 3 > 3(x - 2)
⇔ 2x - 3 > 3x - 6
⇔ 2x - 3x > -6 + 3
⇔ -x > -3
⇔ x < 3
Vậy S = {x | x < 3}
b) (12x + 1)/12 ≤ (9x + 1)/3 - (8x + 1)/4
⇔ 12x + 1 ≤ 4(9x + 1) - 3(8x + 1)
⇔ 12x + 1 ≤ 36x + 4 - 24x - 3
⇔ 12x - 36x + 24x ≤ 4 - 3 - 1
⇔ 0x ≤ 0 (luôn đúng với mọi x)
Vậy S = R
a: =>2x-3>3x-6
=>-x>-3
=>x<3
b: =>12x+1<=36x+4-24x-3
=>12x+1<=12x+1
=>0x<=0(luôn đúng)
a) \(2x-3>3\left(x-2\right)\)
\(\Leftrightarrow2x-3>3x-6\)
\(\Leftrightarrow2x-3x>-6+3\)
\(\Leftrightarrow-x>-3\)
\(\Leftrightarrow x< 3\)
Vậy bất phương trình có nghiệm là \(x< 3\)
b) \(\dfrac{12x+1}{12}\le\dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)
\(\Leftrightarrow\dfrac{12x+1}{12}\le\dfrac{\left(9x+1\right).4}{3.4}-\dfrac{\left(8x+1\right)3}{4.3}\)
\(\Leftrightarrow12x+1\le36x+4-24x-3\)
\(\Leftrightarrow12x-36x+24x\le4-3-1\)
\(\Leftrightarrow0x\le0\)
Vậy bất phương trình vô nghiệm