Tính đạo hàm:
\(y=-\dfrac{cosx}{3sin^2x}+\dfrac{4}{3}cotx\)
Tìm TXĐ của hàm số
y=\(\dfrac{cotx+3}{cosx}\)
y=\(\dfrac{2x}{3cosx-1}\)
Hàm số \(y=\dfrac{cotx+3}{cosx}\) xác định khi:
\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
Hàm số \(\dfrac{2x}{3cosx-1}\) xác định khi:
\(3cosx-1\ne0\Leftrightarrow cosx\ne\dfrac{1}{3}\Leftrightarrow x\ne\pm arccos\left(\dfrac{1}{3}\right)+k2\pi\)
Tính đạo hàm của HS
y= -cosx/3sin^3 + 4/3 cotx
y'=\(\dfrac{\left(-cosx\right)'.3.sin^3x-\left(-cosx\right)\left(3.sin^3x\right)'}{\left(3.sin^3x\right)^2}\)
y'=\(\dfrac{3.sinx.sin^3x+9.cosx.sin^2x}{^{ }\left(3.sin^3x\right)^2}\)
y'=\(\dfrac{3.sin^4x+9.cosx.sin^2x}{9.sin^6x}\)
y'=\(\dfrac{3.sin^2x\left(sin^2x+3.cosx\right)}{9.sin^6x}\)
y'=\(\dfrac{sin^2x+3.cosx}{3.sin^4x}\)
cho tanx= - \(\dfrac{2}{3}\) tính A = \(\dfrac{3sin^2x-cos^2x}{2sin^2x}\)
cho cotx = \(\dfrac{3}{5}\) tính A = \(\dfrac{sin^2x-5cos^2x}{2cos^2x}\)
Lời giải:
a.
\(A=\frac{3}{2}-2(\frac{\cos x}{\sin x})^2=\frac{3}{2}-2.(\frac{1}{\tan x})^2=\frac{3}{2}-\frac{1}{2}(\frac{-3}{2})^2=-3\)
b.
\(A=\frac{1}{2}(\frac{\sin x}{\cos x})^2-\frac{5}{2}=2(\frac{1}{\cot x})^2-\frac{5}{2}=2(\frac{5}{3})^2-\frac{5}{2}=\frac{55}{18}\)
a, \(A=\dfrac{3sin^2\left(x\right)-cos^2\left(x\right)}{2sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\dfrac{cos^2\left(x\right)}{sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\dfrac{1}{tan^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\left(-\dfrac{3}{2}\right)^2=-3\)
b, \(A=\dfrac{sin^2\left(x\right)-5cos^2\left(x\right)}{2cos^2\left(x\right)}=\dfrac{1}{2}\dfrac{sin^2\left(x\right)}{cos^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\dfrac{1}{cot^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\left(\dfrac{5}{3}\right)^2-\dfrac{5}{2}=\dfrac{55}{18}\)
Đạo hàm của hàm số y = \(-\frac{cosx}{3sin^3x}+\frac{4}{3}cotx\)
Xét tính chẵn, lẻ của các hàm số
1,\(y=cosx+sin^2x\)
2,\(y=sinx+cosx\)
3,\(y=tanx+2sinx\)
4,\(y=tan2x-sin3x\)
5,\(sin2x+cosx\)
6,\(y=cosx.sin^2x-tan^2x\)
7,\(y=cos\left(x-\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{4}\right)\)
8,\(y=\dfrac{2+cosx}{1+sin^2x}\)
9,\(y=\left|2+sinx\right|+\left|2-sinx\right|\)
TÍNH ĐẠO HÀM :
\(y=\left(1-3x\right).\sqrt{x-3}\)
\(y=\sqrt{2x+1}+\dfrac{1}{x+1}\)
\(y=\sqrt{\dfrac{1-x}{1+x}}\)
\(y=cos5x.co7x\)
\(y=cosx.sin^2x\)
\(y=tan^42x\)
\(y=\dfrac{2x}{sinx+cosx}\)
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ MÌNH CẢM ƠN
1/ \(y'=\left(1-3x\right)'\sqrt{x-3}+\left(1-3x\right)\left(\sqrt{x-3}\right)'=-3\sqrt{x-3}+\dfrac{1}{2\sqrt{x-3}}\left(1-3x\right)\)
2/ \(y'=\dfrac{1}{\sqrt{2x+1}}-\dfrac{1}{\left(x+1\right)^2}\)
3/ \(y'=\dfrac{1}{2}.\sqrt{\dfrac{1+x}{1-x}}.\left(\dfrac{1-x}{1+x}\right)'=\dfrac{1}{2}\sqrt{\dfrac{1+x}{1-x}}.\dfrac{-2}{\left(1+x\right)^2}=-\sqrt{\dfrac{1+x}{1-x}}.\dfrac{1}{\left(1+x\right)^2}\)
4/ \(y'=\left(\cos5x\right)'.\cos7x+\cos5x.\left(\cos7x\right)'=-5\sin5x.\cos7x-7\cos5x\sin7x\)
5/ \(y'=\left(\cos x\right)'\sin^2x+\cos x\left(\sin^2x\right)'=-\sin^3x+2\sin x.\cos^2x\)
6/ \(y'=\left(\tan^42x\right)'=4.\tan^32x.\dfrac{2}{\cos^22x}\)
7/ \(y'=\dfrac{2\sin x+2\cos x-2x.\cos x+2x\sin x}{\left(\sin x+\cos x\right)^2}\)
Ờm, bạn tự rút gọn nhé :) Mình đang hơi lười :b
cho tanx = \(\sqrt{3}\) tính A = \(\dfrac{sin^2x}{sin^2x-cos^2x}\)
cho cotx = -\(\sqrt{3}\) tính A = \(\dfrac{sinx-4cosx}{2sinx-cosx}\)
a: tan x=căn 3
=>sin x/cosx=căn 3
=>sin x=cosx*căn 3
\(A=\dfrac{\left(cosx\cdot\sqrt{3}\right)^2}{\left(cosx\cdot\sqrt{3}\right)^2-cos^2x}=\dfrac{3}{3-1}=\dfrac{3}{2}\)
b: cot x=-căn 3
=>cosx=-sinx*căn 3
\(A=\dfrac{sinx+4\cdot sinx\cdot\sqrt{3}}{2\cdot sinx+sinx\cdot\sqrt{3}}=\dfrac{1+4\sqrt{3}}{2+\sqrt{3}}=\left(4\sqrt{3}+1\right)\left(2-\sqrt{3}\right)\)
=8căn 3-12+2-căn 3
=7căn 3-10
Lời giải:
\(A=\frac{1}{\frac{\sin ^2x-\cos ^2x}{\sin ^2x}}=\frac{1}{1-(\frac{\cos x}{\sin x})^2}=\frac{1}{1-(\frac{1}{\tan x})^2}=\frac{1}{1-(\frac{1}{\sqrt{3}})^2}=\frac{3}{2}\)
\(A=\frac{\sin x-4\cos x}{2\sin x-\cos x}=\frac{1-4.\frac{\cos x}{\sin x}}{2-\frac{\cos x}{\sin x}}=\frac{1-4\cot x}{2-\cot x}=\frac{1-4.(-\sqrt{3})}{2-(-\sqrt{3})}=-10+7\sqrt{3}\)
Tính đạo hàm của các hàm số sau:
a) y=\(\dfrac{3x^2-18x-2}{1-2x}-\dfrac{2x-3}{x+4}\)
b) y=\(-\dfrac{\sin x}{3\cos^3x}+\dfrac{4}{3}\tan x\)
1) cho góc x (0 độ \(\le\) x < 90 độ) thỏa mãn \(sinx=\dfrac{4}{5}\) giá trị của \(tanx\) là
2) cho góc x (0 độ \(\le\) x \(\le\) 180 độ) thỏa mãn \(cosx=\dfrac{1}{3}\) giá trị của \(sinx\) là
3) cho \(cosx=\dfrac{1}{2}\) tính \(P=3sin^2x+4cos^2x\)