So sánh \(A=\dfrac{13^{19}+1}{13^{18}+1}\) và \(B=\dfrac{13^{20}+1}{13^{19}+1}\)
So sánh
a)17/20 và 18/19 b)19/18 và 2023/2022
c)13/17 và 135/175 d)53/63 và 535/636
e)13/15 và 22/25 \(\dfrac{2023}{2023^2+1}và\dfrac{2022}{2022^2+1}\)
a) \(\dfrac{17}{20}< \dfrac{18}{20}< \dfrac{18}{19}\Rightarrow\dfrac{17}{20}< \dfrac{18}{19}\)
b) \(\dfrac{19}{18}>\dfrac{19+2024}{18+2024}=\dfrac{2023}{2022}\Rightarrow\dfrac{19}{18}>\dfrac{2023}{2022}\)
c) \(\dfrac{135}{175}=\dfrac{27}{35}\)
\(\dfrac{13}{17}=\dfrac{26}{34}< \dfrac{26+1}{34+1}=\dfrac{27}{35}\)
\(\Rightarrow\dfrac{13}{17}< \dfrac{135}{175}\)
Cho :
\(S=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}\)
Hãy so sánh S và \(\dfrac{1}{2}\)
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)
So sánh \(\dfrac{-13}{12}\)và \(\dfrac{-19}{18}\)
quy đồng
lấy 36 làm mẫu số chung
-13 / 12 = -39/36
-19/18 = -38/36
mà đối với số dương số nào lớn hơn thì số đó bé hơn
vậy -39/36 <-38/36
=> -13 / 12 < -19/18 = -38/36
Giải:
\(\dfrac{-13}{12}=-1+\dfrac{-1}{12}\)
\(\dfrac{-19}{18}=-1+\dfrac{-1}{18}\)
Vì \(\dfrac{-1}{12}< \dfrac{-1}{18}\) nên \(\dfrac{-13}{12}< \dfrac{-19}{18}\)
Chúc bạn học tốt!
Tính hợp lí :
a) \(\dfrac{14}{13}\) + ( \(\dfrac{-1}{13}\) - \(\dfrac{19}{20}\) )
b) \(\dfrac{-24}{17}\) - ( \(\dfrac{-7}{17}\) - \(\dfrac{1}{16}\) )
a, \(\dfrac{14}{13}-\dfrac{1}{13}-\dfrac{19}{20}=1-\dfrac{19}{20}=\dfrac{1}{20}\)
b, \(-\dfrac{24}{17}+\dfrac{7}{17}+\dfrac{1}{16}=\dfrac{-17}{17}+\dfrac{1}{16}=-1+\dfrac{1}{16}=-\dfrac{15}{16}\)
\(\dfrac{14}{13}+\left(\dfrac{-1}{13}-\dfrac{19}{20}\right)=\left(\dfrac{14}{13}+\dfrac{-1}{13}\right)-\dfrac{19}{20}=\\ \dfrac{13}{13}-\dfrac{19}{20}=1-\dfrac{19}{20}=\dfrac{20}{20}-\dfrac{19}{20}=\dfrac{1}{20}\)
Câu b em làm tương tự nhé
\(a.\dfrac{14}{13}+\left(\dfrac{-1}{13}+\dfrac{19}{20}\right)=\left(\dfrac{14}{13}+\dfrac{-1}{13}\right)-\dfrac{19}{20}=1+\dfrac{19}{20}=\dfrac{20}{20}-\dfrac{19}{20}=\dfrac{1}{20}\\ b.\dfrac{-24}{17}+\left(\dfrac{-7}{17}-\dfrac{1}{16}\right)=\left(\dfrac{-24}{17}+\dfrac{7}{17}\right)+\dfrac{1}{16}=-1+\dfrac{1}{16}=\dfrac{-16}{16}+\dfrac{1}{16}=\dfrac{-15}{16}\)
So sánh hai số sau: A= \(\frac{13^{19}+1}{13^{18}+1}\) và B= \(\frac{13^{20}+1}{13^{19}+1}\)
Vì 1320+1/1319+1>1
=>1320+1/1319+1>1320+1+12/1319+1+12
Ta có: 1320+1+12/1319+12
= 1320+13/1319+13
=13(1319+1)/13(1318+1)
= 1319+1/1318+1
=> 1320+1/1319+1> 1319+1/1318+1
Vậy A<B
\(B=\frac{13^{20}+1}{13^{19}+1}>1\)
\(B=\frac{13^{20}+1}{13^{19}+1}>\frac{13^{20}+1+12}{13^{19}+1+12}\)
\(B=\frac{13^{20}+13}{13^{19}+13}=\frac{13\left(13^{19}+1\right)}{13\left(13^{18}+1\right)}\)
\(B=\frac{13^{19}+1}{13^{18}+1}=A\)
\(\Rightarrow B>A\)
Tất cả đọc kĩ lại đi. Đừng có xem qua loa rồi nói tôi như vậy.
\(\dfrac{14}{13}\) + (\(\dfrac{-1}{13}\) - \(\dfrac{19}{20}\))
`14/13 + ( (-1)/3 - 19/20)`
`= 14/13 + (-1)/3 - 19/20`
`= 13/13 -19/20`
`= 1 -19/20`
`= 20/20 -19/20`
`=1/20`
` 14/13 + ( -1/13 - 19/20 ) `
`= (14/13 + (-1)/13) - 19/20 `
`= 1 - 19/20 `
`= 1/20`
A=\(\dfrac{13^{15}+1}{13^{16}+1}\) và B= \(\dfrac{13^{16}+1}{13^{17}+1}\)
so sánh A và B
\(ta có A=\dfrac{13^{15}+1}{13^{16}+1}=\dfrac{13^{15}}{13^{16}}+1\)=\(\dfrac{1}{13}+1\)
B=\(\dfrac{13^{16}+1}{13^{17}+1}=\dfrac{13^{16}}{13^{17}}+1\)=\(\dfrac{1}{13}+1\)
vậy A=B
\(A=\dfrac{13^{15}+1}{13^{16}+1}vàB=\dfrac{13^{16}+1}{13^{17}+1}\)
ta có
\(\dfrac{13^{16}+1}{13^{17}+1}< 1\Rightarrow\dfrac{13^{16}+1+12}{13^{17}+1+12}=\dfrac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\dfrac{13^{15}+1}{13^{16}+1}=A\)
vậy B<A
\(A=\dfrac{13^{15}+1}{13^{16}+1}vàB=\dfrac{13^{16}+1}{13^{17}+1}\)
ta có B<1 nên
\(\dfrac{13^{16}+1}{13^{17}+1}< \dfrac{13^{16}+1+12}{13^{17}+1+12}=\dfrac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\dfrac{13^{15}+1}{13^{16}+1}=A\)
Vậy B<A
BÀI 1 : SO SÁNH 2 SỐ SAU:
A = 1319 + 1 / 1318 + 1
B = 1320 + 1 / 1319 + 1
( GIẢI RÕ RA NHÉ ! )
cho A =\(\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}\)SO SÁNH A VỚI \(\dfrac{1}{2}\)
Ta có:\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}>4\cdot\dfrac{1}{16}=\dfrac{1}{4}\)
\(\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}>4\cdot\dfrac{1}{20}=\dfrac{1}{5}\)
=>\(\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{20}>\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{9}{20}\)
=>A>\(\dfrac{1}{12}+\dfrac{9}{20}\)
\(\dfrac{1}{12}>\dfrac{1}{20}\)
=>\(A>\dfrac{1}{20}+\dfrac{9}{20}=\dfrac{1}{2}\)
Vậy...