Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hi Mn
Xem chi tiết
Tinh Lãm
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 5 2020 lúc 18:39

ĐKXĐ: \(x\ge-\frac{3}{2}\)

Do \(1+\sqrt{3+2x}>0\) nên BPT tương đương:

\(4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right)\left(1-\sqrt{3+2x}\right)^2\left(1+\sqrt{3+2x}\right)^2\)

\(\Leftrightarrow4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right).4\left(x+1\right)^2\)

- Với \(x=-1\) ko phải là nghiệm

- Với \(x\ne-1\)

\(\Leftrightarrow\left(1+\sqrt{3+2x}\right)^2< 2x+1\)

\(\Leftrightarrow4+2x+2\sqrt{3+2x}< 2x+1\)

\(\Leftrightarrow2\sqrt{3+2x}< -3\)

BPT vô nghiệm

phú tâm
Xem chi tiết
Cam Anh
Xem chi tiết
Tinh Lãm
Xem chi tiết
Phương Nguyễn Ngọc Mai
Xem chi tiết
Ngô Thành Chung
19 tháng 1 2021 lúc 21:48

Gt ⇔ \(\left|2x-3\right|\le x+1\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3\le x+1\\x\ge\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}3-2x\le x+1\\x< \dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

 ⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le4\\x\ge\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x< \dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\dfrac{3}{2}\le x\le4\\\dfrac{2}{3}\le x< \dfrac{3}{2}\end{matrix}\right.\)

⇔ \(\dfrac{2}{3}\le x\le4\)

Vậy bất phương trình có tập nghiệm là

\(S=\left[\dfrac{2}{3};4\right]\)

Diêu Ngọc Diệu Hoa
Xem chi tiết
linhlucy
Xem chi tiết
💋Amanda💋
17 tháng 4 2019 lúc 14:30
https://i.imgur.com/JBHuggh.jpg