Bài 1: Giải bpt:
a, \(2x^3+x+3>0\)
b, \(x^2\left(x^2+3x-4\right)\ge0\)
Bài 2: Hãy tìm các giá trị của m để bpt:
a, \(x^2+2\left(m-3\right)x+m^2-2m-6>0\) có nghiệm
b, \(\left(m-2\right)x^2+2\left(2m-3\right)x+5m-6\le0\) có nghiệm
Giải các bất phương trình sau:
1) \(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\)
2) \(\dfrac{\left(3-2x\right)x^2}{\left(x-1\right)}\ge0\)
3) \(\dfrac{2x}{x-1}\le\dfrac{5}{2x-1}\)
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
giải các bpt sau
a. \(\sqrt{-x^2+6x-5}>8-2x\)
b. \(\sqrt{\left(x+5\right)\left(3x+4\right)}< 4\left(x-1\right)\)
c. \(2x^2+\sqrt{x^2-5x-6}>10x+15\)
Giải bpt sau:
\(\frac{\left(x-1\right)^3\left(x+2\right)^4\left(x-3\right)^5\left(x+6\right)}{x^2\left(x-7\right)^3}\le0\)
Giải Bpt
\(4\left(x+1\right)^2< \left(2x+1\right)\left(1-\sqrt{3+2x}\right)^2\)
giải các hệ bất phương trình sau :
a, \(\left\{{}\begin{matrix}2x^2+9x+7>0\\x^2+x-6< 0\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}-x^2+4x-7< 0\\x^2-2x-1\ge0\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}-2x^2-5x+4< 0\\-x^2-3x+10>0\end{matrix}\right.\)
xin giúp mình -.-
giải các phương trình sau
a. \(\left|\frac{4-x}{x-3}\right|=\left|\frac{2x+1}{2-x}\right|\)
b. \(10-6\left|x+1\right|=x^2-9x\)
c. \(\left|x^2-2x+3\right|=5-x\)
Giải các bất phương trình sau
a \(\frac{x^3-2x^2+4x}{-x^2+x+12}>0\)
b \(\frac{4x-3}{x-2}>7-\frac{3x-4}{x+3}\)
c \(\frac{\left(3-x\right)\left(x^2-4x+4\right)}{x^3-x}\le0\)
d \(\frac{2x-3}{3x+5}< \frac{3x+5}{2x-3}\)
e \(\frac{3x+2}{\left(x+1\right)\left(x+2\right)}\ge1\)
f \(\frac{x^3-3}{x^2-1}\ge3\)