Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi be
Xem chi tiết
crewmate
Xem chi tiết
Akai Haruma
30 tháng 11 2021 lúc 8:19

Bài 1:

$M=\frac{27}{x-15}-1$

Để $M$ min thì $\frac{27}{x-15}$ min. 

Để $\frac{27}{x-15}$ min thì $x-15$ là số âm lớn nhất 

$\Rightarrow x$ là số nguyên lớn nhất nhỏ hơn 15

$\Rightarrow x=14$

Khi đó: $M_{\min}=\frac{42-14}{14-15}=-28$

Akai Haruma
30 tháng 11 2021 lúc 8:22

Bài 2:

\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}\left[\left(\dfrac{1}{2}\right)^4+1\right]=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}.\dfrac{17}{16}=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}=16=\left(\dfrac{1}{2}\right)^{-4}\)

$\Rightarrow x-4=-4\Leftrightarrow x=0$

Toanhockho
Xem chi tiết
missing you =
29 tháng 1 2022 lúc 10:42

\(1.x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(1\right)\)\(đặt:x^2+\dfrac{1}{x^2}=t\)

\(x>0\Rightarrow t\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(x< 0\Rightarrow-t=-x^2+\dfrac{1}{\left(-x^2\right)}\ge2\Rightarrow t\le-2\)

\(\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\left(2\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-2mt+2m-1=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin\left(2\right)\\t=2m-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2m-1\le-2\\2m-1\ge2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{3}{4}\end{matrix}\right.\)

\(2.\)  \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=3-m\end{matrix}\right.\)

\(dựa\) \(vào\) \(đồ\) \(thị\) \(f\left(\left|x\right|\right)\) \(\Rightarrow f\left(\left|x\right|\right)=-1\) \(có\) \(2nghiem\) \(pb\)

\(\left(1\right)có\) \(6\) \(ngo\) \(pb\Leftrightarrow\left\{{}\begin{matrix}-1< 3-m< 3\\3-m\ne-1\\\end{matrix}\right.\)\(\Leftrightarrow0< m< 4\)

\(\Rightarrow m=\left\{1;2;3\right\}\)

 

 

Bánh Mì
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 17:44

Chắc đề là \(A=\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2\) mới đúng

\(\Delta'=\left(m-1\right)^2-\left(2m-6\right)=\left(m-2\right)^2+3>0\)

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-6\end{matrix}\right.\) với \(m\ne3\)

\(A=\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2=\left(\dfrac{x_1^2+x_2^2}{x_1x_2}\right)^2-2\)

\(A=\left[\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2=\left(\dfrac{4\left(m-1\right)^2}{2m-6}-2\right)^2-2\)

\(A=\left(2m-\dfrac{8}{m-3}\right)^2-2\)

\(A\) nguyên \(\Leftrightarrow\dfrac{8}{m-3}\) nguyên \(\Leftrightarrow m-3=Ư\left(8\right)\)

\(\Leftrightarrow m=...\)

nguyen thi be
Xem chi tiết
Thao An
27 tháng 6 2021 lúc 16:12

1, y' = \(\dfrac{m^2-9}{\left(3x-m\right)^2}\)

ycbt <=> \(\left\{{}\begin{matrix}m^2-9< 0\\\dfrac{m}{-3}\ne x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3< m< 3\\m\ge0\end{matrix}\right.\)

\(\Leftrightarrow0\le m\le3\)

when the imposter is sus
Xem chi tiết
Võ Thùy Trang
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 9 2021 lúc 20:19

a) \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\left(x\ge0,x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

b) \(M=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}=1-\dfrac{5}{\sqrt{x}+2}\in Z\)

\(\Rightarrow\sqrt{x}+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(\sqrt{x}\ge0\forall x\)

\(\Rightarrow\sqrt{x}\in\left\{3\right\}\Rightarrow x=9\left(tm\right)\)

Thảo Vi
Xem chi tiết
Hà Mi
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 7 2021 lúc 20:43

\(y'=-x^2+2\left(m-2\right)x-m^2+3m\)

\(\Delta'=\left(m-2\right)^2-m^2+3m=4-m\)

TH1: \(\Delta'\le0\Rightarrow m\ge4\Rightarrow y'\le0\) ; \(\forall x\) hàm nghịch biến trên R (thỏa mãn)

TH2: \(m< 4\) , bài toán thỏa mãn khi:

\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-\left(2m-4\right)+1\ge0\\2m-4< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+5\ge0\\m< 3\end{matrix}\right.\) \(\Rightarrow m\le\dfrac{5-\sqrt{5}}{2}\)

Vậy \(\left[{}\begin{matrix}m\ge4\\m\le\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)

Hug Hug - 3 cục bánh bao...
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 12:52

Đề sai rồi bạn