Tinh:
\(\dfrac{3}{5.7}\) + \(\dfrac{3}{7.9}\) + ..... + \(\dfrac{3}{59.61}\)
So sánh:
A = \(\dfrac{3^2}{2.5}+\dfrac{3^2}{5.8}+\dfrac{3^2}{8.11}\) và B = \(\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
So sánh: A =\(\dfrac{3^2}{2.5}+\dfrac{3^2}{5.8}+\dfrac{3^2}{8.11}\) và B \(\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
tính
\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+\dfrac{3}{9.11}+...+\dfrac{3}{59.61}\)
\(T=\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+\dfrac{3}{9\cdot11}+...+\dfrac{3}{59\cdot61}\)
\(=\dfrac{3}{2}\cdot\left(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+...+\dfrac{2}{59\cdot61}\right)\)
\(=\dfrac{3}{2}\cdot\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(=\dfrac{3}{2}\cdot\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}\cdot\dfrac{56}{305}=\dfrac{84}{305}\)
\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+\dfrac{3}{9.11}+...+\dfrac{3}{59.61}\)
\(=3.\left(\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+...+\dfrac{1}{59.61}\right)\)
\(=3.\dfrac{1}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+....+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(=\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
\(=\dfrac{3}{2}.\dfrac{56}{305}\)
\(=\dfrac{84}{305}\)
=1/5-1/7+1/7-1/9+1/9-1/11+...+1/59-1/61
=1/5-1/61
=56/305
A=\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
B=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
A=3/4.(1/5.7+1/7.9+....+1/59.61)
A=3/4.(1/5-1/7+1/7-1/9+...+1/59-1/61)
A=3/4.(1/5-1/61)
A=3/4.56/305
A=42/305
mình làm cho bạn phần A thôi nhé còn phần B mình chưa nghĩ ra cách làm ahihi!
\(a)\dfrac{11}{5.7}+\dfrac{11}{7.9}+\dfrac{11}{9.11}+...+\dfrac{11}{59.61} \)
`11/(5.7) + 11/(7.9) + 11/(9.11) + ... + 11/(59.61)`
`= 2.(11/(5.7) + 11/(7.9) + ... + 11/(59.61))`
`= 11.(2/(5.7) + 2/(7.9) + ... + 2/(59.61))`
`= 11.(1/5 - 1/7 + 1/7 - 1/9 + ... +1/59 - 1/61)`
`= 11.(1/5 - 1/61)`
`= 11.56/305`
`= 616/305`
`11/(5.7) + 11/(7.9) + 11/(9.11) + ... + 11/(59.61)`
`= 2.(11/(5.7) + 11/(7.9) + ... + 11/(59.61))`
`= 11.(2/(5.7) + 2/(7.9) + ... + 2/(59.61))`
`= 11.(1/5 - 1/7 + 1/7 - 1/9 + ... +1/59 - 1/61)`
`= 11.(1/5 - 1/61)`
`= 11.56/305`
`= 616/305`
`= 616/305 : 2`
`= 308/305`
Tính \(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+............+\dfrac{4}{59.61}\)
Ta có :
\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+............+\dfrac{4}{59.61}\)
\(\dfrac{A}{2}=\dfrac{2}{5.7}+\dfrac{2}{7.9}+..............+\dfrac{2}{59.61}\)
\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.......+\dfrac{1}{59}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{56}{305}\)
\(\Rightarrow A=\dfrac{112}{305}\)
Chúc bn học tốt!!
\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
\(A=2\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
\(A=2\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(A=2\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
\(A=2.\dfrac{56}{305}\)
\(A=\dfrac{112}{305}\)
\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}..........+\dfrac{4}{59.61}\)
\(\dfrac{1}{2}A=\dfrac{2}{5.7}+\dfrac{2}{7.9}+.........+\dfrac{2}{59.61}\)
\(\dfrac{1}{2}A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.....+\dfrac{1}{59}-\dfrac{1}{61}\)
\(\dfrac{1}{2}A=\dfrac{1}{5}-\dfrac{1}{61}\)
\(\dfrac{1}{2}A=\dfrac{56}{305}\)
\(A=\dfrac{112}{305}\)
Bài 1:
\(a)\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{2006}}\)
\(b)\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+....+\dfrac{2}{59.61}\)
\(c)\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{3}{35}+....+\dfrac{7}{9999}\)
a,
\(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\\ =1\cdot\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\cdot\dfrac{1}{2^2}+\left(2-1\right)\cdot\dfrac{1}{2^3}+...+\left(2-1\right)\cdot\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}-\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}}{2^{2006}}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}-1}{2^{2006}}\)
b,
\(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{59\cdot61}\\ =\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\\ =\dfrac{1}{5}-\dfrac{1}{61}\\ =\dfrac{56}{305}\)
c,
\(\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{9999}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\dfrac{100}{101}\\ =\dfrac{350}{101}\)
Đặt:
\(X=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)
\(2X=2\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)
\(2X=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)
\(2X-X=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)\(X=\dfrac{1}{2}-\dfrac{1}{2^{2016}}\)
\(Y=\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{2}{59.61}\)
\(Y=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(Y=\dfrac{1}{5}-\dfrac{1}{61}=\dfrac{56}{305}\)
\(Z=\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\)
\(Z=\dfrac{7}{1.3}+\dfrac{7}{3.5}+\dfrac{7}{5.7}+...+\dfrac{7}{99.101}\)
\(Z=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(Z=\dfrac{7}{2}\left(1-\dfrac{1}{101}\right)\)
\(Z=\dfrac{7}{2}.\dfrac{100}{101}=\dfrac{700}{202}\)
Tính giá trị các biểu thức:
\(\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
Đặt A=\(\frac{4}{5.7}\)+\(\frac{4}{7.9}\)+...+\(\frac{4}{59.61}\)
A=2( \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{59.61}\))
A=2( \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\)\(\frac{1}{59}-\frac{1}{61}\))
=2( \(\frac{1}{5}-\frac{1}{61}\))=2.\(\frac{56}{305}\)=\(\frac{112}{305}\)
Tính nhanh tổng sau
A= \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
\(A=\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+\dfrac{9-7}{7.9}+...+\dfrac{61-59}{59.61}\)
\(A=\dfrac{5}{3.5}-\dfrac{3}{3.5}+\dfrac{7}{5.7}-\dfrac{5}{5.7}+\dfrac{9}{7.9}-\dfrac{7}{7.9}+...+\dfrac{61}{59.61}-\dfrac{59}{59.61}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(A=\dfrac{1}{3}-\dfrac{1}{61}=\dfrac{61}{183}-\dfrac{3}{183}=\dfrac{58}{183}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
= \(\dfrac{1}{3}-\dfrac{1}{61}\)
= \(\dfrac{58}{183}\)
A= \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
A= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
A= \(\dfrac{1}{3}-\dfrac{1}{61}\)
A= \(\dfrac{58}{183}\)