Ta có :
\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+............+\dfrac{4}{59.61}\)
\(\dfrac{A}{2}=\dfrac{2}{5.7}+\dfrac{2}{7.9}+..............+\dfrac{2}{59.61}\)
\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.......+\dfrac{1}{59}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{56}{305}\)
\(\Rightarrow A=\dfrac{112}{305}\)
Chúc bn học tốt!!
\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
\(A=2\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
\(A=2\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(A=2\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
\(A=2.\dfrac{56}{305}\)
\(A=\dfrac{112}{305}\)
\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}..........+\dfrac{4}{59.61}\)
\(\dfrac{1}{2}A=\dfrac{2}{5.7}+\dfrac{2}{7.9}+.........+\dfrac{2}{59.61}\)
\(\dfrac{1}{2}A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.....+\dfrac{1}{59}-\dfrac{1}{61}\)
\(\dfrac{1}{2}A=\dfrac{1}{5}-\dfrac{1}{61}\)
\(\dfrac{1}{2}A=\dfrac{56}{305}\)
\(A=\dfrac{112}{305}\)
A=4(\(\dfrac{1}{5.7}\)+\(\dfrac{1}{7.9}\)+...+\(\dfrac{1}{59.61}\))
=4(\(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{9}\)+...+\(\dfrac{1}{59}\)-\(\dfrac{1}{61}\))
=4(\(\dfrac{1}{5}\)-\(\dfrac{1}{61}\))
=4.\(\dfrac{56}{305}\)
=\(\dfrac{224}{305}\)
\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
\(\dfrac{A}{2}=\dfrac{2}{5.7}+\dfrac{2}{7.9}+...\dfrac{2}{59.61}\)
\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{56}{305}\)
\(\Rightarrow A=\dfrac{112}{305}\)
2 * {2/5*7 + 2/7*9 +............+2/59*61}
2 * {1/5 - 1/7 + 1/7 - 1/9 +.........+1/59 - 1/61}
2 * {1/5 - 1/61}
2 * 56/305 =112/305
chúc bạn học tốt