\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....+\dfrac{1}{99.100}\) tính giá trị biểu thức
Tính giá trị biểu thức
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ A=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Tính giá trị biểu thức : \(P=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{99}{100}\)
\(P=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(P=1+\left(\dfrac{-1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{-1}{3}+\dfrac{1}{3}\right)+..+\left(\dfrac{-1}{99}+\dfrac{1}{99}\right)+\dfrac{-1}{100}\)
\(P=1+0+0+....+0+\dfrac{-1}{100}\)
\(P=1+\dfrac{-1}{100}\)
\(P=\dfrac{99}{100}\)
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
Bài 1 : Tìm 2 số biết hiệu của chúng bằng 5 và 50% số lớn = 1 nửa số bé.
Bài 2 : tính giá trị biểu thức: A = \(\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)
Bài 3 : Tìm x
a , \(\dfrac{x}{3}-\dfrac{1}{8}=\dfrac{5}{8}\)
bài 2:
\(A=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(A=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=9.\left(1-\dfrac{1}{100}\right)=9.\left(\dfrac{100}{100}-\dfrac{1}{100}\right)=\dfrac{891}{100}\)
bài 3:
\(=>\dfrac{x}{3}=\dfrac{5}{8}+\dfrac{1}{8}=\dfrac{8}{8}=1=\dfrac{3}{3}\)
\(=>x=3\)
tính:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..................+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+..................+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+.......+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+......+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{99}-\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+......+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+.......+\dfrac{1}{100}\)
Tính E = \(\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+.....+\dfrac{1}{100}}{\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+....+\dfrac{1}{99.100}}\)
Xét mẫu số : \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)(cộng 2 cái ngoặc đầu tiên và lấy 2 nhân với ngoặc thứ 3 thì đc kết quả như này)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}+\dfrac{1}{100}-1-\dfrac{1}{2}-\dfrac{1}{3}-...-\dfrac{1}{50}\)
=\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\)
Vậy thay kết quả của mẫu vừa tính đc vào E, ta có :
\(E=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}}{\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}}=\) \(\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}}{\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}}=1\)
1.Tính
A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)
B=\(\dfrac{3}{5.6}+\dfrac{3}{6.7}+\dfrac{3}{7.8}+.....+\dfrac{3}{101.102}\)
C=\(\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+\dfrac{1}{5.6.7}\)
D=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}\)
A=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1-1/100 A=99/100 B= (1/5.6+1/6/7+...+1/101.102).3 B=(1/5-1/6+1/6-1/7+...+1/101-1/102).3 B=(1/5-1/102).3 B=97/170
1) Tính
a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Bài 1: Thực hiện các phép tính:
d) 3,15+2,4=5,55
e) \(\dfrac{5}{7}.\dfrac{2}{11}+\dfrac{5}{7}.\dfrac{9}{11}\)
f) 1,25.3,6+3,6.8,75
h) B= \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
d, `3,15+2,4=5,55`
e, \(\dfrac{5}{7}.\dfrac{2}{11}+\dfrac{5}{7}.\dfrac{9}{11}=\dfrac{5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)=\dfrac{5}{7}.\dfrac{11}{11}=\dfrac{5}{7}.1=\dfrac{5}{7}\)
f, `1,25.3,6+3,6.8,75=3,6(1,25+8,75)=3,6.10=36`
\(h,\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
\(e\dfrac{5}{7}\times\left(\dfrac{2}{11}+\dfrac{9}{11}\right)=\dfrac{5}{7}\times1=\dfrac{5}{7}\)
\(f3.6\times\left(1.25+8.75\right)=3.6\times10=36\)
9 Cho A= \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}.\) Chứng minh rằng : \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+..+\dfrac{1}{9900}\)
\(A=\left(\dfrac{1}{2}+\dfrac{1}{12}\right)+\left(\dfrac{1}{30}+...+\dfrac{1}{9900}\right)\)
\(A>\dfrac{1}{2}+\dfrac{1}{12}\Rightarrow A>\dfrac{7}{12}\left(1\right)\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{5}{6}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< \dfrac{5}{6}\left(2\right)\)
\(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)
Ta có :
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..........+\dfrac{1}{99.100}\)
\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+............+\dfrac{1}{99.100}>\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{7}{12}\)
\(\Leftrightarrow A>\dfrac{1}{12}\)\(\left(1\right)\)
Lại có :
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...........+\dfrac{1}{99.100}\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-.........-\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Leftrightarrow A< \dfrac{5}{6}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
CMR
\(\dfrac{7}{12}< A< \dfrac{5}{6}\)
A= \(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
= \(1-\dfrac{1}{100}\)
= \(\dfrac{99}{100}\)
Ta có :
\(\dfrac{7}{12}=\dfrac{7\cdot50}{12\cdot50}=\dfrac{350}{600}\)
\(\dfrac{99}{100}=\dfrac{99\cdot6}{100\cdot6}=\dfrac{594}{600}\)
\(\dfrac{5}{6}=\dfrac{5\cdot100}{6\cdot100}=\dfrac{500}{600}\)
Chỗ này hình như bn viết sai đề nha
QĐMS lên phải là \(\dfrac{7}{12}< \dfrac{5}{6}< A\) chứ
Bn xem lại đề ik nha ☺
THANKSSSSSSSSSSSS