Giải phương trình sau:\(\dfrac{1}{x-1}+\dfrac{1}{x-2}=\dfrac{1}{x+2}+\dfrac{1}{x+1}\)
giải phương trình sau \(\dfrac{\dfrac{x+1}{x-1}-\dfrac{x-1}{2\left(x+1\right)}}{1+\dfrac{x+1}{x-1}}=\dfrac{x-1}{2\left(x+1\right)}\)
\(ĐK:x\ne-1;x\ne1\\ PT\Leftrightarrow\dfrac{\dfrac{2x^2+4x+2-x^2+2x-1}{2\left(x+1\right)\left(x-1\right)}}{\dfrac{x-1+x+1}{x-1}}=\dfrac{x-1}{2\left(x+1\right)}\\ \Leftrightarrow\dfrac{x^2+6x+1}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x-1}{2x}=\dfrac{x-1}{2\left(x+1\right)}\\ \Leftrightarrow\dfrac{x^2+6x+1}{4x\left(x+1\right)}=\dfrac{x-1}{2\left(x+1\right)}\\ \Leftrightarrow x^2+6x+1=2x\left(x-1\right)\\ \Leftrightarrow x^2+6x+1=2x^2-2x\\ \Leftrightarrow x^2-8x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4+\sqrt{17}\left(tm\right)\\x=4-\sqrt{17}\left(tm\right)\end{matrix}\right.\)
Giải phương trình sau:
\(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x+1}{x^2+x}\)
ĐKXĐ:\(x\ne-1,x\ne0\)
\(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x+1}{x^2+x}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}-\dfrac{2x+1}{x\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x^2-1+x-2x-1}{x\left(x+1\right)}=0\\ \Rightarrow x^2-x-2=0\\ \Leftrightarrow x^2-2x+x-2=0\\ \Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
Vậy pt có tập nghiệm `S={2}`
\(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x+1}{x^2+x}\left(đk:x\ne0,-1\right)\)
\(\Leftrightarrow\dfrac{x-1}{x}+\dfrac{1}{x+1}-\dfrac{2x+1}{x\left(x+1\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)+x-2x-1}{x\left(x+1\right)}=0\)
\(\Leftrightarrow x^2+x-x-1+x-2x-1=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Delta=b^2-4ac=\left(-1\right)^2-4.\left(-2\right)=9>0\Rightarrow\sqrt{\Delta}=3\)
\(\Rightarrow\)PT có 2 nghiệm \(x_1,x_2\)
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{1+3}{2}=2\left(n\right)\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{1-3}{2}=-1\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{2\right\}\)
Giải phương trình sau:\(\dfrac{1}{x^2+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+10+48}=\dfrac{4}{105}\)
(Giải thích các bước giải)
\(\dfrac{1}{x^2+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)
\(\Leftrightarrow\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)
\(\Leftrightarrow\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)+\left(\dfrac{1}{x+2}-\dfrac{1}{x+4}\right)+\left(\dfrac{1}{x+4}-\dfrac{1}{x+6}\right)+\left(\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)=\dfrac{8}{105}\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)
\(\Leftrightarrow\dfrac{8}{x\left(x+8\right)}=\dfrac{8}{105}\)
\(\Leftrightarrow x\left(x+8\right)=105\)
\(\Leftrightarrow x^2+8x-105=0\)
\(\Leftrightarrow x^2-7x+15x-105=0\)
\(\Leftrightarrow x\left(x-7\right)+15\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)
Thử lại ta có nghiệm của phương trình trên là \(x=7\text{v}à\text{x}=15\)
Giải các phương trình sau:
\(j.\dfrac{1}{x-1}-\dfrac{7}{x-2}=\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)
\(k.\dfrac{2x+19}{5x^2-5}-\dfrac{17}{x^2-1}=\dfrac{3}{1-x}\)
\(l.\dfrac{1}{x-1}-\dfrac{2x^2+5}{x^3-1}=\dfrac{4}{x^2+x+1}\)
Giải các phương trình sau:
\(a.\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(b.\dfrac{7}{x+2}=\dfrac{3}{x-5}\)
\(c.\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)
\(d.\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
TK
https://lazi.vn/edu/exercise/giai-phuong-trinh-4x-5-x-1-2-x-x-1-7-x-2-3-x-5
a: \(\Leftrightarrow4x-5=2x-2+x\)
=>4x-5=3x-2
=>x=3(nhận)
b: =>7x-35=3x+6
=>4x=41
hay x=41/4(nhận)
c: \(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)
\(\Leftrightarrow28-6x-12=-9-5x+20\)
=>-6x+16=-5x+11
=>-x=-5
hay x=5(nhận)
d: \(\Leftrightarrow x^2+2x+1-\left(x^2-2x+1\right)=16\)
\(\Leftrightarrow4x=16\)
hay x=4(nhận)
Giải phương trình sau: \(1+\dfrac{x-2}{1-x}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)
`1+(x-2)/(1-x)+(2x^2-5)/(x^3-1)=4/(x^2+x+1)(x ne 1)`
`<=>(x^3-1)/(x^3-1)-((x-2)(x^2+x+1))/(x^3-1)+(2x^2-5)/(x^3-1)=(4(x-1))/(x^3-1)`
`<=>x^3-1-(x-2)(x^2+x+1)+2x^2-5=4(x-1)`
`<=>x^3-1-(x^3-x^2-x-2)+2x^2-5=4x-4`
`<=>x^3-1-x^3+x^2+x+2+2x^2-5-4x+4=0`
`<=>3x^2-3x+2=0`
`<=>x^2-2/3 x+2/3=0`
`<=>x^2-2.x. 1/3+1/9+5/9=0`
`<=>(x-1/3)^2=-5/9` vô lý
Vậy phương trình vô nghiệm.
ĐKXĐ: \(x\ne1\)
Ta có: \(1+\dfrac{x-2}{1-x}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)
\(\Leftrightarrow\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{\left(x-2\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
Suy ra: \(x^3-1-\left(x^3+x^2+x-2x^2-2x-2\right)+2x^2-5=4x-4\)
\(\Leftrightarrow x^3-1-x^3+x^2+x+2+2x^2-5-4x+4=0\)
\(\Leftrightarrow3x^2-3x=0\)
\(\Leftrightarrow3x\left(x-1\right)=0\)
mà 3>0
nên x(x-1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=1\left(loại\right)\end{matrix}\right.\)
Vậy: S={0}
giải các phương trình sau
1, \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
2, \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)
3, \(\dfrac{-3}{x-4}-\dfrac{3-5x}{x^2-16}=\dfrac{1}{x+4}\)
1: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
\(\Leftrightarrow\dfrac{5x^2-12}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x+3}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x^2-5x}{\left(x+1\right)\left(x-1\right)}\)
Suy ra: \(5x^2+3x-9=5x^2-5x\)
\(\Leftrightarrow8x=9\)
hay \(x=\dfrac{9}{8}\left(tm\right)\)
2: Ta có: \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)
\(\Leftrightarrow\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}+\dfrac{3x-15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)
Suy ra: \(6x=3x-15\)
\(\Leftrightarrow3x=-15\)
hay \(x=-5\left(loại\right)\)
2. ĐKXĐ: $x\neq \pm 5$
PT \(\Leftrightarrow \frac{3}{x-5}+\frac{3x-15}{x^2-25}=\frac{3}{x+5}\)
\(\Leftrightarrow \frac{3}{x-5}+\frac{3(x-5)}{(x-5)(x+5)}=\frac{3}{x+5}\)
\(\Leftrightarrow \frac{3}{x-5}+\frac{3}{x+5}=\frac{3}{x+5}\Leftrightarrow \frac{3}{x-5}=0\) (vô lý)
Vậy pt vô nghiệm.
3. ĐKXĐ: $x\neq \pm 4$
PT \(\Leftrightarrow \frac{-3(x+4)}{(x-4)(x+4)}-\frac{3-5x}{(x-4)(x+4)}=\frac{x-4}{(x-4)(x+4)}\)
\(\Rightarrow -3(x+4)-(3-5x)=x-4\)
\(\Leftrightarrow 2x-15=x-4\Leftrightarrow x=11\) (thỏa mãn)
giải các phương trình sau
1, \(\dfrac{3}{2+x}-\dfrac{x-1}{x^2-4}=\dfrac{2}{x-2}\)
2, \(\dfrac{x-5}{2x-3}-\dfrac{x}{2x+3}=\dfrac{1-6x}{4x^2-9}\)
1: Ta có: \(\dfrac{3}{x+2}-\dfrac{x-1}{x^2-4}=\dfrac{2}{x-2}\)
Suy ra: \(3x-6-x+1=2x+4\)
\(\Leftrightarrow2x-5=2x+4\left(vôlý\right)\)
2: Ta có: \(\dfrac{x-5}{2x-3}-\dfrac{x}{2x+3}=\dfrac{1-6x}{4x^2-9}\)
Suy ra: \(\left(x-5\right)\left(2x+3\right)-x\left(2x-3\right)=1-6x\)
\(\Leftrightarrow2x^2-7x-15-2x^2+6x+6x-1=0\)
\(\Leftrightarrow5x=16\)
hay \(x=\dfrac{16}{5}\)
giải các phương trình sau :
a) \(\dfrac{x-1}{x+1}-\dfrac{1}{x}=\dfrac{2}{x\left(x+1\right)}\)
\(\dfrac{x-1}{x+1}-\dfrac{1}{x}=\dfrac{2}{x\left(x+1\right)}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
Ta có : \(\dfrac{x-1}{x+1}-\dfrac{1}{x}=\dfrac{2}{x\left(x+1\right)}\)
\(\Leftrightarrow\dfrac{x\left(x-1\right)}{x\left(x+1\right)}-\dfrac{x+1}{x\left(x+1\right)}=\dfrac{2}{x\left(x+1\right)}\)
`=> x(x-1) -(x+1)=2`
`<=>x^2 - x -x-1=2`
`<=> x^2 -2x-1+2=0`
`<=> x^2 -2x +1=0`
`<=> (x+1)^2=0`
`<=>x+1=0`
`<=>x=-1(ktm)`
Vậy pt vô nghiệm
giải các phương trình sau
1, \(\dfrac{-3}{x-4}-\dfrac{3-5x}{x^2-16}=\dfrac{1}{x+4}\)
2, \(\dfrac{3}{2+x}-\dfrac{x-1}{x^2-4}=\dfrac{2}{x-2}\)
3, \(\dfrac{x-5}{2x-3}-\dfrac{x}{2x+3}=\dfrac{1-6x}{4x^2-9}\)
1: Ta có: \(\dfrac{-3}{x-4}-\dfrac{3-5x}{x^2-16}=\dfrac{1}{x+4}\)
Suy ra: \(-3\left(x+4\right)-3+5x=x-4\)
\(\Leftrightarrow-3x-12-3+5x-x+4=0\)
\(\Leftrightarrow x=11\left(nhận\right)\)
2. ĐKXĐ: $x\neq \pm 2$
PT \(\Leftrightarrow \frac{3(x-2)}{(2+x)(x-2)}-\frac{x-1}{(x-2)(x+2)}=\frac{2(x+2)}{(x-2)(x+2)}\)
\(\Leftrightarrow \frac{3(x-2)-(x-1)}{(x-2)(x+2)}=\frac{2(x+2)}{(x-2)(x+2)}\)
\(\Rightarrow 3(x-2)-(x-1)=2(x+2)\)
\(\Leftrightarrow 2x-5=2x+4\Leftrightarrow 9=0\) (vô lý)
Vậy pt vô nghiệm
3. ĐKXĐ: $x\neq \pm \frac{3}{2}$
PT \(\Leftrightarrow \frac{(x-5)(2x+3)-x(2x-3)}{(2x-3)(2x+3)}=\frac{1-6x}{(2x-3)(2x+3)}\)
\(\Rightarrow (x-5)(2x+3)-x(2x-3)=1-6x\)
\(\Leftrightarrow 2x^2-7x-15-2x^2+3x+6x-1=0\)
\(\Leftrightarrow 2x-16=0\Leftrightarrow x=8\) (thỏa mãn)