Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Tuyết Ly
Xem chi tiết
dream XD
Xem chi tiết
Đào Ngọc Tuấn Hưng
24 tháng 11 2021 lúc 13:01

1) Xét rằng x > 7 <=> A < 0

Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến

A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1

Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6

Xem chi tiết
★Čүċℓøρş★
11 tháng 12 2019 lúc 21:32

P = - x2 - 8x + 5

P = - ( x2 + 8x - 5 )

P = - ( x2 + 2 . 4 . x + 42 - 42 - 5 )

P = - [ ( x + 4 )2 - 21 ]

P = - ( x + 4 )2 + 21 \(\le\)21

Dấu " = " xảy ra \(\Leftrightarrow\)x + 4 = 0

                             \(\Rightarrow\)x        = - 4

Vậy : Min P = 21 \(\Leftrightarrow\)x = - 4

Khách vãng lai đã xóa
★Čүċℓøρş★
11 tháng 12 2019 lúc 21:33

Nhầm Max P = 21 \(\Leftrightarrow\)x = - 4 nhé . Thứ lỗi

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
10 tháng 8 2020 lúc 20:54

P = -x2 - 8x + 5 

P = -x2 - 8x - 16 + 21

P = -( x2 + 8x + 16 ) + 21

P = -( x + 4 )2 + 21

\(-\left(x+4\right)^2\le0\forall x\Rightarrow-\left(x+4\right)^2+21\le21\)

Dấu " = " xảy ra <=> x + 4 = 0 => x = -4

Vậy PMax = 21, đạt được khi x = -4

Khách vãng lai đã xóa
Mạc Hoa Nhi
Xem chi tiết
Trang Nguyễn
19 tháng 5 2021 lúc 10:22

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

Nguyễn Lê Phước Thịnh
19 tháng 5 2021 lúc 10:53

a) Để M nhận giá trị nguyên thì \(8x+1⋮4x-1\)

\(\Leftrightarrow8x-2+3⋮4x-1\)

mà \(8x-2⋮4x-1\)

nên \(3⋮4x-1\)

\(\Leftrightarrow4x-1\inƯ\left(3\right)\)

\(\Leftrightarrow4x-1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow4x\in\left\{2;0;4;-2\right\}\)

\(\Leftrightarrow x\in\left\{\dfrac{1}{2};0;1;-\dfrac{1}{2}\right\}\)

mà x là số nguyên

nên \(x\in\left\{0;1\right\}\)

Vậy: \(x\in\left\{0;1\right\}\)

ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2023 lúc 15:31

loading...  loading...  loading...  

Nguyễn Thanh Nhung
Xem chi tiết

\(D=5-8x-x^2\\ =-\left[x^2+2.x.4+16\right]+21\\ =-\left(x+4\right)^2+21\le21\forall x\in R\\ \Rightarrow max_D=21.khi.x=-4\)

\(E=4x-x^2+1\\ =-\left(x^2-2.x.2+4^2\right)+17\\ =-\left(x-2\right)^2+17\le17\forall x\in R\\ Vậy:max_E=17.khi.\left(x-2\right)=0\Leftrightarrow x=2\)

Trần Đình Thiên
4 tháng 8 2023 lúc 9:52

a) D = 5 - 8x - x^2

Để hoàn thành bình phương, ta cần thêm một số vào biểu thức để biến thành một biểu thức có dạng (x - h)^2. Ta có thể thêm 16 vào cả hai phía của biểu thức:

D + 16 = 5 - 8x - x^2 + 16
= 21 - 8x - x^2

Biểu thức trên có thể viết lại thành (x - 4)^2 - 5:

D + 16 = (x - 4)^2 - 5

Để tìm giá trị lớn nhất của D, ta cần tìm giá trị nhỏ nhất của (x - 4)^2. Vì (x - 4)^2 luôn không âm, giá trị nhỏ nhất của nó là 0. Do đó, giá trị lớn nhất của D là 0 - 5 = -5.

Vậy giá trị lớn nhất của biểu thức a là -5.

b) E = 4x - x^2 + 1

Tương tự như trên, ta thêm 4 vào cả hai phía của biểu thức:

E + 4 = 4x - x^2 + 1 + 4
= 5 - x^2 + 4x

Biểu thức trên có thể viết lại thành -(x - 2)^2 + 9:

E + 4 = -(x - 2)^2 + 9

Để tìm giá trị lớn nhất của E, ta cần tìm giá trị nhỏ nhất của -(x - 2)^2. Vì -(x - 2)^2 luôn không dương, giá trị nhỏ nhất của nó là 0. Do đó, giá trị lớn nhất của E là 0 + 9 = 9.

Vậy giá trị lớn nhất của biểu thức b là 9.

Trương Anh Kiệt
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 9 2021 lúc 15:57

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

Dấu \("="\Leftrightarrow x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

Dấu \("="\Leftrightarrow x=1\)

\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)

Dấu \("="\Leftrightarrow x=-1\)

Nguyễn Việt Lâm
11 tháng 9 2021 lúc 16:00

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

\(A_{min}=-7\) khi \(x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(B_{min}=-\dfrac{1}{4}\) khi \(x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

\(C_{min}=-4\) khi \(x=1\)

Biểu thức D không tồn tại cả max lẫn min

Akai Haruma
11 tháng 9 2021 lúc 17:09

1.

$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$

Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow A\geq 2.0-7=-7$

Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$

2.

$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$

Vậy $B_{\min}=-0,25$ khi $x=-1,5$

3.

$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$

Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$

4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất

Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$

Trương Anh Kiệt
Xem chi tiết
Minh Hiếu
10 tháng 9 2021 lúc 20:50

A\(=2x^2-8x+1\)

=2x(x-4)+1≥1

Min A=1 ⇔x=4

B=\(x^2+3x+2\)

\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)\(-\dfrac{1}{4}\)

Min B=-1/4⇔x=-3/2

Minh Hiếu
10 tháng 9 2021 lúc 20:55

C=\(4x^2-8x\)

=\(\left(\left(2x\right)^2-2x.4+16\right)-16\)

=(2x-4)^2 -16≥-16

Min C=-16 ⇔x=2

Minh Hiếu
10 tháng 9 2021 lúc 21:00

D=\(\dfrac{1}{-\left(x^2-2x+1\right)+6}\)

=\(\dfrac{1}{-\left(x-1\right)^2+6}\)\(\dfrac{1}{6}\)

Min D=1/6 ⇔x=1