Với giá trị nào của
m
thì phương trình \(\left(m-1\right)x^2+2\left(m-1\right)x+m-3=0\) vô nghiệm
Với giá trị nào của
m
thì phương trình \(x^2-\left(3m+1\right)x+m-5=0\) có 1 nghiệm x = -1
Thay $x=-1$ vào phương trình $x^2-(3m+1)x+m-5=0$
$\Rightarrow (-1)^2-(3m+1).(-1)+m-5=0\\\Leftrightarrow 1+3m+1+m-5=0\\\Leftrightarrow 4m-3=0\\\Leftrightarrow 4m=3\\\Leftrightarrow m=\dfrac{3}{4}$
Vậy $m=\dfrac{3}{4}$
Với \(x=-1\) thì phương trình đã cho trở thành:
\(\left(-1\right)^2-\left(3m+1\right)\left(-1\right)+m-5=0\)
\(\Leftrightarrow1+3m-1+m-5=0\)
\(\Leftrightarrow4m-5=0\)
\(\Leftrightarrow4m=5\)
\(\Leftrightarrow m=\dfrac{5}{4}\)
Vậy \(m=\dfrac{5}{4}\) khi phương trình có nghiệm \(x=-1\)
Với giá trị nào của tham số m thì phương trình \(\left(m^2-1\right)x+m^2-2m-3=0\) vô nghiệm ?
A. \(m=1\) B. \(m=-1\) C. \(m=-2\) D. \(m=-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-1=0\\m^2-2m-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm1\\m\ne-1;m\ne3\end{matrix}\right.\Leftrightarrow m=1\)
Chọn A
Với giá trị nào của m thì phương trình \(\left(m-1\right)x^2-2\left(m-2\right)x+m-3=0\) nghiệm thoả mãn \(x_1+x_2+x_1x_2< 1?\)
\(\Delta'=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)=1>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm với \(m\ne1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\)
\(x_1+x_2+x_1x_2< 1\)
\(\Leftrightarrow\dfrac{2\left(m-2\right)}{m-1}+\dfrac{m-3}{m-1}< 1\)
\(\Leftrightarrow\dfrac{3m-7}{m-1}-1< 0\)
\(\Leftrightarrow\dfrac{2m-6}{m-1}< 0\)
\(\Leftrightarrow1< m< 3\)
Điều kiện: m\(\ne\)1.
\(\Delta\)'=(m-2)2-(m-1)(m-3)=1>0.
x1+x2+x1x2=\(\dfrac{2\left(m-2\right)}{m-1}+\dfrac{m-3}{m-1}\)=\(\dfrac{3m-7}{m-1}\)<1 \(\Rightarrow\) 3m-7<m-1 \(\Rightarrow\) m<3.
Vậy với m\(\in\)(-\(\infty\);3)\{1}, yêu cầu bài toán thỏa mãn.
Chứng minh rằng với mọi giá trị của m thì
phương trình \(\text{ }mx^2-\left(3m+2\right)x+1=0\) luôn có nghiệm
phương trình \(\left(m^2+5\right)x^2-\)\(\left(\sqrt{3}m-2\right)x+1=0\)luôn vô nghiệm
Với giá trị nào của m thì phương trình \(\left(m-1\right)x^2-2\left(m-2\right)x+m-3=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1+x_2+x_1x_2< 1\)?
Đoạn cuối mình làm sai:
\(\dfrac{3m-7}{m-1}< 1\Leftrightarrow\dfrac{2m-6}{m-1}< 0\Leftrightarrow1< m< 3\).
Nếu vậy thì đáp án đúng là A.
Để pt có 2 nghiệm thì:
\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-2\right)^2-\left(m-3\right)\left(m-1\right)=1\ge0\end{matrix}\right.\Leftrightarrow m\ne1\).
Khi đó theo hệ thức Viète: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\).
Do đó \(x_1+x_2+x_1x_2< 1\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)}{m-1}< 1\Leftrightarrow\dfrac{3m-7}{m-1}< 1\Leftrightarrow3m-7< m-1\Leftrightarrow2m< 6\Leftrightarrow m< 3\).
Vậy m là các số thoả mãn m < 3 và m khác 1.
Cho phương trình \(x^2-2\left(m-1\right)x+2m-3=0\left(1\right)\)
a) Chứng minh \(\left(1\right)\) luôn có nghiệm với mọi m.
b) Tìm giá trị của m để \(\left(1\right)\) có 2 nghiệm trái dấu.
c) Tìm giá trị của m để \(\left(1\right)\) có 2 nghiệm sao cho nghiệm này gấp đôi nghiệm kia.
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-3\right)\)
\(=4m^2-8m+4-8m+12\)
\(=4m^2-16m+16\)
\(=\left(2m-4\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
b: Để phương trình có hai nghiệm trái dấu thì 2m-3<0
hay m<3/2
c: Để phương trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia thì ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=2m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x_2=-2m+2\\x_1=2x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-2}{3}\\x_1=\dfrac{4m-4}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=2m-3\)
\(\Leftrightarrow2m-3=\dfrac{2m-2}{3}\cdot\dfrac{4m-4}{3}\)
\(\Leftrightarrow8\left(m-1\right)^2=9\left(2m-3\right)\)
\(\Leftrightarrow8m^2-16m+8-18m+27=0\)
\(\Leftrightarrow8m^2-34m+35=0\)
\(\text{Δ}=\left(-34\right)^2-4\cdot8\cdot35=36>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{34-6}{16}=\dfrac{28}{16}=\dfrac{7}{4}\\m_2=\dfrac{34+6}{16}=\dfrac{40}{16}=\dfrac{5}{2}\end{matrix}\right.\)
Cho hệ phương trình\(\left\{{}\begin{matrix}\left(m+2\right)x+\left(m+1\right)y=3\\\\x+3y=4\end{matrix}\right.\)
Xác định các giá trị của m để hệ phương trình vô nghiệm
Hệ đã cho vô nghiệm khi
\(m+2=\dfrac{m+1}{3}\ne\dfrac{3}{4}\Leftrightarrow m=-\dfrac{5}{2}\)
Với giá trị nào m của thì phương trình có nghiệm kép:
\(x^2+\left(3-m\right)x-m-1=0\)
\(\text{Δ}=\left(3-m\right)^2-4\left(-m-1\right)\)
\(=m^2-6m+9+4m+4=m^2-2m+13\)
\(=\left(m-1\right)^2+12>0\)
Vậy: Phương trình không thể có nghiệm kép
Tìm m để :
a. Phương trình \(x^2-\left(2m+1\right)x+m^2-3=0\) có nghiệm kép
b. Phương trình \(x^2-3mx+m-2=0\) vô nghiệm
c. Phương trình \(x^2-2\left(m-1\right)x+m^2=0\) có nghiệm
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2