Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Luyri Vũ
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 16:17

a. 

ĐKXĐL \(x\ge-\dfrac{1}{3}\)

\(\dfrac{3x}{\sqrt{3x+10}}=\dfrac{3x}{\sqrt{3x+1}+1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{3x+10}=\sqrt{3x+1}+1\left(1\right)\end{matrix}\right.\)

Xét (1)

\(\Leftrightarrow3x+10=3x+2+2\sqrt{3x+1}\)

\(\Leftrightarrow\sqrt{3x+1}=4\)

\(\Leftrightarrow x=5\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 16:21

b.

ĐKXĐ: \(-1\le x\le1\)

\(\Leftrightarrow\dfrac{\left(1+x-1\right)}{\sqrt{1+x}+1}\left(\sqrt{1-x}+1\right)=2x\)

\(\Leftrightarrow\dfrac{x\left(\sqrt{1-x}+1\right)}{\sqrt{1+x}+1}=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{\sqrt{1-x}+1}{\sqrt{1+x}+1}=2\left(1\right)\end{matrix}\right.\)

Xét (1)

\(\Leftrightarrow\sqrt{1-x}+1=2\sqrt{1+x}+2\)

\(\Leftrightarrow\sqrt{1-x}=2\sqrt{1+x}+1\)

\(\Leftrightarrow1-x=4\left(x+1\right)+1+4\sqrt{x+1}\)

\(\Leftrightarrow4\sqrt{x+1}=-5x-4\) (\(x\le-\dfrac{4}{5}\))

\(\Leftrightarrow16\left(x+1\right)=25x^2+40x+16\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\dfrac{24}{25}\end{matrix}\right.\)

Minh Tuấn Phạm
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Hung nguyen
3 tháng 5 2017 lúc 11:13

\(A=\left(\dfrac{6x+4}{3\sqrt{3x^3}-8}-\dfrac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\dfrac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)

Điều kiện tự làm nha:

Đặt \(\sqrt{3x}=a\) thì ta có:

\(A=\left(\dfrac{2a^2+4}{a^3-8}-\dfrac{a}{a^2+2a+4}\right).\left(\dfrac{1+a^3}{1+a}-a\right)\)

\(=\left(\dfrac{2a^2+4}{\left(a-2\right)\left(a^2+2a+4\right)}-\dfrac{a}{a^2+2a+4}\right).\left(\dfrac{\left(1+a\right)\left(1-a+a^2\right)}{1+a}-a\right)\)

\(=\dfrac{a^2+2a+4}{\left(a-2\right)\left(a^2+2a+4\right)}.\left(1-2a+a^2\right)\)

\(=\dfrac{\left(a-1\right)^2}{a-2}=\dfrac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)

Linh Nhi
Xem chi tiết
Nguyễn Nhật Minh
5 tháng 7 2018 lúc 9:24

\(a.\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)

\(\text{⇔}\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)

\(\text{⇔}\text{ |}\sqrt{x-1}-2\text{ |}+\text{ |}\sqrt{x-1}+3\text{ |}=5\) ( x ≥ 1 )

\(\text{ |}\sqrt{x-1}-2\text{ |}+\sqrt{x-1}+3=5\) ( 1 )

+) Với : \(\sqrt{x-1}>2\)\(x>5\) , ta có :

( 1) ⇔ \(\sqrt{x-1}-2+\sqrt{x-1}+2=5\)

\(2\sqrt{x-1}=5\)\(x=\dfrac{29}{4}\left(TM\right)\)

+) Với : \(\sqrt{x-1}< 2\text{⇔}x< 5\) , ta có :

( 1) ⇔ \(5=5\) ( luôn đúng )

KL.............

\(b.\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=x-1\)

\(\text{ |}\sqrt{x-1}+1\text{ |}+\text{ |}\sqrt{x-1}-1\text{ |}=x-1\)

Tới đây giải tương tự như trên nhé .

Còn lại Tương tự .

Cold Wind
5 tháng 7 2018 lúc 9:27

mỗi căn thức trên có dạng: \(\sqrt{a^2+b+2a\sqrt{b}}\)

ta sẽ phân tích thành: \(\sqrt{a^2+b+2a\sqrt{b}}=\sqrt{\left(\sqrt{b}-a\right)^2}\) (#)

** lấy căn lớn đầu tiên của câu a làm vd**

\(a^2+b=x+3\) (1)

\(2a\sqrt{b}=-4\sqrt{x-1}\) (2)

(2) => \(a\sqrt{b}=-2\sqrt{x-1}\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\\sqrt{b}=\sqrt{x-1}\end{matrix}\right.\) (*)

thử lại với (1): \(a^2+b=a^2+\left(\sqrt{b}\right)^2=\left(-2\right)^2+\left(\sqrt{x-1}\right)^2=4+x-1=x+3\)

Nếu VT (a^2 +b) bằng VP (x+3) thì đã tìm được a và b đúng , tức là dấu suy ra cuối của (*) đúng và biểu thức có thể phân tích thành dạng căn bình phương 1 biểu thức (dạng (#))

ráp a, căn b vào công thức (#), ta đc:

\(\sqrt{x+3-4\sqrt{x-1}}=\sqrt{2+x-1-4\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}-\left(-2\right)\right)^2}=\sqrt{\left(\sqrt{x-1}+2\right)^2}=\left|\sqrt{x-1}+2\right|\)

***************

sau khi phá căn các biểu thức trong phương trình rồi thì giải phương trình chứa dấu GTTĐ bằng cách xét 4 trường hợp.

Sau khi phá hết căn lớn, phương trình sẽ có dạng như sau:

\(\left|A\right|+\left|B\right|=5\) (số 5 là lấy của câu a, làm vd thôi, còn số gì cũng đc)

chia 4 trường hợp: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}A< 0\\B< 0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A< 0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B< 0\end{matrix}\right.\end{matrix}\right.\)

(thêm dấu bằng vào 1 loại dấu thôi (lớn > hoặc bé <)

dựa vào dấu của biểu thức đang xét mà bỏ dấu GTTĐ. Sau khi ra được x thì thử lại vào đk (không được CHỈ thử vào phương trình, vì nghiệm có thể đúng trong trường hợp này nhưng sai trong trường hợp khác, dẫn đến nhận nhầm nghiệm)

Đinh Doãn Nam
Xem chi tiết
Huyền
1 tháng 7 2019 lúc 20:16

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

Huyền
1 tháng 7 2019 lúc 20:34

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

Trần Hoàng Đạt
Xem chi tiết
Akai Haruma
21 tháng 7 2018 lúc 18:03

a) ĐKXĐ: \(-1\leq x\leq 2\)

\(\sqrt{(1+x)(2-x)}=1+2x-2x^2\)

\(\Leftrightarrow \sqrt{2+x-x^2}=1+2x-2x^2=-3+2(2+x-x^2)\)

Đặt \(\sqrt{2+x-x^2}=t(t\geq 0)\). PT trở thành:

\(t=-3+2t^2\)

\(\Leftrightarrow 2t^2-t-3=0\Leftrightarrow (2t-3)(t+1)=0\)

\(\Rightarrow t=\frac{3}{2}\) (do \(t\geq 0)\)

\(\Rightarrow 2+x-x^2=\frac{9}{4}\Rightarrow x^2-x+\frac{1}{4}=0\)

\(\Leftrightarrow (x-\frac{1}{2})^2=0\Rightarrow x=\frac{1}{2}\) (thỏa mãn)

Akai Haruma
21 tháng 7 2018 lúc 18:14

b) ĐK: \(x\geq \frac{1}{3}\)

PT \(\Leftrightarrow \sqrt{(3x-1)+6\sqrt{3x-1}+9}+\sqrt{(3x-1)-6\sqrt{3x-1}+9}=3x+4\)

\(\Leftrightarrow \sqrt{(\sqrt{3x-1}+3)^2}+\sqrt{(\sqrt{3x-1}-3)^2}=3x+4\)

\(\Leftrightarrow \sqrt{3x-1}+3+|\sqrt{3x-1}-3|=3x+4\)

\(\Leftrightarrow |\sqrt{3x-1}-3|=3x-\sqrt{3x-1}+1\)

Nếu \(\sqrt{3x-1}\geq 3\):

\(\Rightarrow \sqrt{3x-1}-3=3x-\sqrt{3x-1}+1\)

\(\Leftrightarrow 3x+4-2\sqrt{3x-1}=0\)

\(\Leftrightarrow (3x-1)-2\sqrt{3x-1}+5=0\)

\(\Leftrightarrow (\sqrt{3x-1}-1)^2+4=0\) (vô lý)

Nếu \(\sqrt{3x-1}< 3\):

\(\Rightarrow 3-\sqrt{3x-1}=3x-\sqrt{3x-1}+1\)

\(\Leftrightarrow 3x=2\Rightarrow x=\frac{2}{3}\) (thỏa mãn)

Vậy...........

Nguyễn Minh Anh
Xem chi tiết
Trúc Giang
18 tháng 1 2022 lúc 19:30

Đặt \(\sqrt{1-3x}=a;\sqrt{x^2+1}=b\left(b>0;a\ge0\right)\)

\(\sqrt{2x^2+3x+1}=\sqrt{2\left(x^2+1\right)+\left(3x-1\right)}=\sqrt{2b^2-a^2}\)

\(\Leftrightarrow\sqrt{2b^2-a^2}+a=2b\)

\(\Leftrightarrow\sqrt{2b^2-a^2}=2b-a\) (2b ≥ a)

Bình phương lên:

\(2b^2-a^2=4b^2-4ab+a^2\)

\(\Leftrightarrow2b^2+2a^2-4ab=0\)

\(\Leftrightarrow a^2+b^2-2ab=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

Tự giải tiếp đc ko ạ ??

Nhi Trần Lê
Xem chi tiết
Edogawa Conan
16 tháng 1 2022 lúc 10:22

ĐK:\(-1\le x\le\dfrac{1}{3}\)

Ta có: VT=\(\sqrt{2x^2+3x+1}+\sqrt{1-3x}\le\sqrt{\left(1+1\right)\left(\sqrt{2x^2+3x+1}^2+\sqrt{1-3x}^2\right)}\)

\(=\sqrt{2.\left(2x^2+2\right)}=2\sqrt{x^2+1}\)

Xét VT= \(2\sqrt{2x^2+1}\ge2\sqrt{x^2+1}\)

\(\Leftrightarrow2x^2+1\ge x^2+1\Leftrightarrow x^2\ge0\) (đúng)

\(\Rightarrow VP\ge VT\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{2x^2+3x+1}}=\dfrac{1}{\sqrt{1-3x}}\\2\sqrt{2x^2+1}=2\sqrt{x^2+1}\end{matrix}\right.\Leftrightarrow x=0\left(tm\right)\)

Lê Thị Mai
Xem chi tiết
Akai Haruma
1 tháng 10 2020 lúc 0:16

Lời giải:
ĐK: $x\geq \frac{1}{3}$

PT $\Leftrightarrow \sqrt{(3x-1)+6\sqrt{3x-1}+9}+\sqrt{(3x-1)-6\sqrt{3x-1}+9}=3x+4$
$\Leftrightarrow \sqrt{(\sqrt{3x-1}+3)^2}+\sqrt{(\sqrt{3x-1}-3)^2}=3x+4$

$\Leftrightarrow |\sqrt{3x-1}+3|+|\sqrt{3x-1}-3|=3x+4$

Nếu $x\geq \frac{10}{3}$ thì:

$\sqrt{3x-1}+3+\sqrt{3x-1}-3=3x+4$

$\Leftrightarrow 2\sqrt{3x-1}=3x+4$

$\Leftrightarrow 2\sqrt{3x-1}=(3x-1)+5$

$\Leftrightarrow (\sqrt{3x-1}-1)^2=-4< 0$ (vô lý)

Nếu $\frac{1}{3}\leq x< \frac{10}{3}$ thì:

$\sqrt{3x-1}+3+3-\sqrt{3x-1}=3x+4$

$\Leftrightarrow 2=3x\Leftrightarrow x=\frac{2}{3}$ (thỏa mãn)

Vậy.......

Khách vãng lai đã xóa