Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
6 tháng 7 2017 lúc 14:16

Ôn tập chương Đường thẳng vuông góc. Đường thẳng song song

Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 23:03

Hình ở đâu vậy bạn?

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
6 tháng 7 2017 lúc 14:17

Ôn tập chương Đường thẳng vuông góc. Đường thẳng song song

Nguyễn Cẩm Tú
Xem chi tiết
Châu Sa
6 tháng 10 2021 lúc 13:35

a) Ta có: CD//Ey

\(\Rightarrow\widehat{CBE}=\widehat{E_1}=130^0\)(so le trong)

b) Ta có: Ta có: CD//Ey

\(\Rightarrow\widehat{EBD}+\widehat{E_1}=180^0\)(trong cùng phía)

\(\Rightarrow\widehat{EBD}=180^0-\widehat{E_1}=50^0\)

Ta có: \(\widehat{EBD}+\widehat{B_1}=50^0+40^0=90^0\)

=> AB⊥BE

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
18 tháng 9 2023 lúc 18:02

Qua C kẻ đường thẳng d song song với Ax

Vì Ax // By nên d // By

Vì d // Ax nên \(\widehat A = \widehat {{C_1}}\)(2 góc so le trong)

Vì d // By nên \(\widehat B = \widehat {{C_2}}\) (2 góc so le trong)

Mà \(\widehat C = \widehat {{C_1}} + \widehat {{C_2}}\)

Vậy \(\widehat C = \widehat A + \widehat B\)(đpcm)

Tùng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
30 tháng 6 2017 lúc 14:51

Hình vuông

Đỗ Thu Trà
Xem chi tiết
Nhật Hạ
12 tháng 9 2017 lúc 5:45

Câu 1

a.

Xét \(\Delta ABC\) có :

\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )

\(\Rightarrow\widehat{BCA}=40^o\) (1)

Ta có Ax là tia đối của AB

suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)

\(\widehat{CAx}=80^o\)

lại có Ay là tia phân giác \(\widehat{CAx}\)

\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)

Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)

mà chúng ở vị trí so le trong

\(\Rightarrow\) Ay//BC

Bài 2

Rảnh làm sau , đến giờ học rồi .

Buddy
Xem chi tiết
Hà Quang Minh
8 tháng 9 2023 lúc 21:37

a) Ta có:

\(AB = AD\) (gt) nên \(A\) thuộc đường trung trực của \(BD\)

\(CB = CD\) (gt) nên \(C\) thuộc đường trung trực của \(BD\)

Vậy \(AC\) là đường trung trực của \(BD\)

b) Xét \(\Delta ABC\) và \(\Delta ADC\) ta có:

\(AB = AD\) (gt)

\(BC = CD\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta ADC\) (c-g-c)

Suy ra: \(\widehat {ABC} = \widehat {ADC} = 95^\circ \) (hai góc tương ứng)

Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên:

\(\widehat A = 360^\circ  - \left( {95^\circ  + 35^\circ  + 95^\circ } \right) = 135^\circ \)