Cho \(\Delta ABC\) có \(\widehat{A}=40^{\text{°}};\widehat{B}=100^{\text{°}}.\) Từ B kẻ đường thẳng vuông góc với AC tại H.
a) Tính \(\widehat{C}\)
b) Chứng tỏ rằng BH là tia phân giác của \(\widehat{ABC}\)
c) Trên nửa mặt phẳng không chứa điểm B và có bờ là đường thẳng AC, vẽ các tia Ax và Cy cùng song song với BH. Tính \(\widehat{xAB}+\widehat{ABC}+\widehat{BCy}\)
Biết \(\widehat{xAB}=125°,\widehat{ABC}=100°,\widehat{BCy}=130°\) . Chứng tỏ rằng hai đường thẳng Ax và Cy cắt nhau
Cho hình vẽ, biết rằng CD//Ey
\(\widehat{BAx}\)= 1400 , \(\widehat{ABD}\)= 400 , \(\widehat{BEy}\)= 1300
a, tính \(\widehat{CBE}\) ?
b, chứng minh Ax // Ey
c, chứng minh AB\(\perp\)BE thêm vào hình vẽ: \(\widehat{B_1}\)= 400, \(\widehat{A_1}\)= 1400 , \(\widehat{E_1}\)= 1300
A x y E B C D
Cho \(\widehat{ABC}\). Trên nửa mặt phẳng bờ ÁC không chứa điểm B, kẻ tia AN sao cho \(\widehat{NAC}=\widehat{ACB}\). Lấy điểm N trên tia đối của tia AN.
a. So sánh \(\widehat{MAB}\) và \(\widehat{ABC}\)
b. Gọi Ax là tia đối của tia AC. Tính \(\widehat{MAX}\) nếu cho \(\widehat{ACB=55^o}\)
c. Xét vị trí của tia AM đối với \(\widehat{xAB}\) trong trường hợp \(\Delta ABC\) có \(\widehat{B}=\widehat{C}\)
Giải và vẽ hình ra cho mình nhé. Mình đang cần gấp
Cho \(\widehat{xAB}=125°,\widehat{ABC}=100°,\widehat{BCY}=130°\). Chứng minh rằng hai đường thẳng Ax và Cy cắt nhau
Cho hình vẽ: (hình minh họa)
Biết \(\text{ }\widehat{\text{aAB}}\) = \(\widehat{\text{ABC}}\) ; \(\widehat{\text{a'DC}}\) = 60\(^{ }\)độ
a) Chứng minh aa' // bb'
b) Tính số đo \(\widehat{\text{b'Cy'}}\), \(\widehat{\text{DCb'}}\)
c) Gọi Dm là tia phân giác của \(\widehat{\text{a'DC}}\), Cn là tia phân giác của \(\widehat{\text{b'Cy'}}\). Chứng minh Dm//Cn
1. Cho hình vẽ , biết a // b ; \(\widehat{ACB}\) = 37'( độ ) , \(\widehat{D_1}\) = 45'( độ ) . Tính \(\widehat{ABC}\) , \(\widehat{AED}\)
1. Cho hình vẽ , biết a // b ; \(\widehat{ACB}\) = 37'( độ ) , \(\widehat{D_1}\) = 45'( độ ) . Tính \(\widehat{ABC}\) , \(\widehat{AED}\)
a, Cho tam giác ABC biết \(\widehat{A}=100^o,\widehat{B}-\widehat{C}=50^o.Tính\widehat{B},\widehat{C}\)
b, Tam giác ABC có\(\widehat{B}=80^o,3\widehat{A}=2\widehat{C}.Tính\widehat{A},\widehat{C}\)