Tìm x biết
\(\left|x+3\right|+x=3\)
Tìm x biết:
\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
(x-1)^3-(x+3)(x^2-3x+9)+3(x^2-4)=2
=>x^3-3x^2+3x-1-x^3-27+3x^2-12=2
=>3x-40=2
=>x=42/3=14
tìm x biết
a)\(x+2x+3x+4x+...+2015x=2016\times2017\)
b)\(1-3+3^2-3^3+...+\left(-3\right)^x=\frac{9^{1008}-1}{4}\)
c)\(\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=605x\)
d)tìm x nguyên biết \(\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|=2500\)
e) tìm x nguyên biết \(2004=\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+99x\right|+\left|x+1000\right|\)
Tìm x biết :
a) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
b) \(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^3+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)
c) \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)+\left(x+4\right)^2\)
d) \(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
a) (x-2)3+6(x+1)2-x3+12=0
⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0
⇒ 24x+10=0
⇒ 24x=-10
⇒ x=-5/12
a.
PT \(\Leftrightarrow x^3-6x^2+12x-8+6(x^2+2x+1)-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow 24x+10=0\Leftrightarrow x=\frac{-5}{12}\)
b. Bạn xem lại đề, nghiệm khá xấu không phù hợp với mức độ tổng thể của bài.
c.
PT $\Leftrightarrow (4x^2+12x+9)+(x^2-1)=5(x^2+4x+4)+(x^2-4x-5)+9(x^2+6x+9)$
$\Leftrightarrow 10x^2+42x+64=0$
$\Leftrightarrow x^2+(3x+7)^2=-15< 0$ (vô lý)
Do đó pt vô nghiệm.
d.
PT $\Leftrightarrow (1-6x+9x^2)-(9x^2-17x-2)=(9x^2-16)-9(x^2+6x+9)$
$\Leftrightarrow 11x+3=-54x-97$
$\Leftrightarrow 65x=-100$
$\Leftrightarrow x=\frac{-20}{13}$
tìm x biết :
\(\left|x-1\right|+2.\left|x-2\right|+3.\left|x-3\right|+4.\left|x-4\right|+5.\left|x-5\right|+20x=0\)
\(\left|x-1\right|+2\left|x-2\right|+3\left|x-3\right|+4\left|x-4\right|+5\left|x-5\right|+20x=0\left(1\right)\)
TH1: x<1
(1) trở thành 1-x+2(2-x)+3(3-x)+4(4-x)+5(5-x)+20x=0
=>\(1-x+4-2x+9-3x+16-4x+25-5x+20x=0\)
=>\(5x+55=0\)
=>x=-11(nhận)
TH2: 1<=x<2
Phương trình (1) sẽ trở thành:
\(x-1+2\left(2-x\right)+3\left(3-x\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+4-2x+9-3x+16-4x+25-5x+20x=0\)
=>\(7x+53=0\)
=>\(x=-\dfrac{53}{7}\left(loại\right)\)
TH3: 2<=x<3
Phương trình (1) sẽ trở thành:
\(x-1+2\left(x-2\right)+3\left(3-x\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+2x-4+9-3x+16-4x+25-5x+20x=0\)
=>\(11x+45=0\)
=>\(x=-\dfrac{45}{11}\left(loại\right)\)
TH4: 3<=x<4
Phương trình (1) sẽ trở thành:
\(x-1+2\left(x-2\right)+3\left(x-3\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+2x-4+3x-9+16-4x+25-5x+20x=0\)
=>\(-3x+27=0\)
=>x=9(loại)
TH5: 4<=x<5
Phương trình (1) sẽ trở thành:
\(\left(x-1\right)+2\left(x-2\right)+3\left(x-3\right)+4\left(x-4\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+2x-4+3x-9+4x-16+25-5x+20x=0\)
=>\(25x-5=0\)
=>x=1/5(loại)
TH6: x>=5
Phương trình (1) sẽ trở thành:
\(\left(x-1\right)+2\left(x-2\right)+3\left(x-3\right)+4\left(x-4\right)+5\left(x-5\right)+20x=0\)
=>\(x-1+2x-4+3x-9+4x-16+5x-25+20x=0\)
=>35x-55=0
=>x=55/35(loại)
Tìm x biết: \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Ta có: \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
\(\dfrac{\left[\left(x+1\right)+\left(x+99\right)\right].50}{2}=0\)
\(\left(x+50\right).50=0\)
\(x+50=0\)
\(x=-50\)
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Có tất cả số hạng là
\(\left(99-1\right):2+1=50số\)
Ta có: \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
hay: \(\left(x+50\right).50=0\)
\(x+50=0\)
\(=>x=-50\)
tìm x biết
\(\left(x+3\right)^{2014}=\left(x+3\right)^{2012}\)
`(x+3)^2014 = (x+3)^2012`
`(x+3)^2014 -(x+3)^2012 =0`
`(x+3)^2012 [(x+3)^2 -1]=0`
TH1 :`(x+3)^2012 =0 => x+3 =0 => x=-3`
TH2 :`(x+3)^2 -1 =0 => (x+3)^2 =1 => [(x+3=1),(x+3=-1):}`
`=> [(x=-2),(x=-4):}`
`(x+3)^2014 = (x+3)^2012`
`=> (x+3)^2014 - (x+3)^2012 = 0`
`=> (x+3)^2 * (x+3)^2012 - (x+3)^2012 = 0`
`=> (x+3)^2012 * [ (x+3)^2 - 1] =0`
`=>`\(\left[{}\begin{matrix}\left(x+3\right)^{2012}=0\\\left(x+3\right)^2-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x+3=0\\\left(x+3\right)^2=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-3\\x+3=1\\x+3=-1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-3\\x=-2\\x=-4\end{matrix}\right.\)
Vậy, `x = {-3; -2; -4}.`
tìm x biết
\(x^2.\left(2\left|x\right|-3\right)=\left|x\right|^2.\left(2\left|x\right|-3\right)\)
Từ gt =>X2 = lXl2
=>X TÙY Ý
mình nghĩ zậy(ko chắc)
Đặt \(t=\left|x\right|\) , \(t\ge0\)
PT đã cho trở thành :
\(t^2\left(2t-3\right)=t^2.\left(2t-3\right)\)
Vì \(x^2=\left|x\right|^2\Rightarrow t^2=t^2\) nên từ đó suy ra pt trên vô số nghiệm.
Tìm \(x\) biết:
\(\left(\sqrt{3}\right)^x=243\)
\(0,1^x=1000\)
\(\left(\dfrac{1}{2}\right)^x=1024\)
\(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
\(5^{x-1}+5^{x+2}=3\)
a: \(\left(\sqrt{3}\right)^x=243\)
=>\(3^{\dfrac{1}{2}\cdot x}=3^5\)
=>\(\dfrac{1}{2}\cdot x=5\)
=>x=10
b: \(0,1^x=1000\)
=>\(\left(\dfrac{1}{10}\right)^x=1000\)
=>\(10^{-x}=10^3\)
=>-x=3
=>x=-3
c: \(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
=>\(\left(0,2\right)^{x+3}< 0,2\)
=>x+3>1
=>x>-2
d: \(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
=>\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{3}{5}\right)^{-2}\)
=>2x+1<-2
=>2x<-3
=>\(x< -\dfrac{3}{2}\)
e: \(5^{x-1}+5^{x+2}=3\)
=>\(5^x\cdot\dfrac{1}{5}+5^x\cdot25=3\)
=>\(5^x=\dfrac{3}{25,2}=\dfrac{1}{8,4}=\dfrac{10}{84}=\dfrac{5}{42}\)
=>\(x=log_5\left(\dfrac{5}{42}\right)=1-log_542\)
Tìm x biết \(\left(x+2\right)^5-\left(x-1\right)^3-\left(x+1\right)^3=x^3\)
Tìm x biết :\(\left(x-1\right)^3+\left(x-3\right)^3=\left(2x-4\right)^3\)
\(\left(x-1\right)^3+\left(x-3\right)^3=\left(2x-4\right)^3\)
\(\Leftrightarrow\left(x-1\right)^3+\left(x-3\right)^3-\left(2x-4\right)^3=0\)
\(\Leftrightarrow\left(x-1\right)^3+\left(x-3\right)^3+\left(4-2x\right)^3=0\)
Đặt \(\left(x-1\right)=a;\left(x-3\right)=b;\left(4-2x\right)=c\)ta có:
\(a^3+b^3+c^3=0\)
\(\Leftrightarrow\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Thay lại, ta được:
\(\left(a+b+c\right)^3=\left(x-1+x-3+4-2x\right)^3=0\)
\(\Rightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left(x-1+x-3\right)\left(x-3+4-2x\right)\left(4-2x+x-1\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(1-x\right)\left(3-x\right)=0\)
\(\Leftrightarrow2x-4=0\Leftrightarrow2x=4\Rightarrow x=2\)
hoặc \(1-x=0\Leftrightarrow x=1\)
hay \(3-x=0\Leftrightarrow x=3\)
Vậy \(x\in\left\{1;2;3\right\}\). Xong :))