Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ly Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 9 2021 lúc 22:13

b: Ta có: \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)

\(\Leftrightarrow\sqrt{x^2-1}=2\)

\(\Leftrightarrow x^2-1=4\)

hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

hưng phúc
30 tháng 9 2021 lúc 22:20

a. \(x+\sqrt{x^2-4x+4}=\dfrac{1}{2}\)

<=> \(x+\sqrt{\left(x-2\right)^2}=\dfrac{1}{2}\)

<=> \(x+\left|x-2\right|=\dfrac{1}{2}\)

<=> \(\left[{}\begin{matrix}x+x-2=\dfrac{1}{2}\\x+\left[-\left(x-2\right)\right]=\dfrac{1}{2}\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}2x=\dfrac{5}{2}\\x-x+2=\dfrac{1}{2}\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\0=\dfrac{-3}{2}\left(VLí\right)\end{matrix}\right.\)

Vậy nghiệm của PT là \(S=\left\{\dfrac{5}{4}\right\}\)

b. \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)

<=> \(\sqrt{9\left(x^2-1\right)}+\sqrt{4\left(x^2-1\right)}=\sqrt{16\left(x^2-1\right)}+2\)

<=> \(3\sqrt{x^2-1}+2\sqrt{x^2-1}-4\sqrt{x^2-1}=2\)

<=> \(\left(3+2-4\right)\sqrt{x^2-1}=2\)

<=> \(\sqrt{x^2-1}=2\)

<=> x2 - 1 = 4

<=> x2 = 5

<=> x = \(\sqrt{5}\)

Uchiha Itachi
Xem chi tiết
Lê Thị Thục Hiền
17 tháng 5 2021 lúc 21:03

b, \(đk:x\ge2\)

Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0

 \(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)

\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)

\(\Leftrightarrow x^3-11x^2+35x-25\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\)  (*)

\(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)

Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5

 

 

 

 

 

 

Lê Thị Thục Hiền
17 tháng 5 2021 lúc 21:27

c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)

\(\Leftrightarrow4x^3+x>0\)

Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))

\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)

\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....

d) Đk: \(x\ge\dfrac{3}{4}\)

Áp dụng bđt cosi:

 \(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)

 \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)

\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)

\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)

Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)

Dấu = xảy ra khi x=1 (tm)

 

 

 


 

Yeutoanhoc
17 tháng 5 2021 lúc 20:19

`a)\sqrtx+\sqrt{2-x}=(3x^2-2x+3)/(x^2+1)`

`đk:0<=x<=2`

`pt<=>sqrtx-1+\sqrt{2-x}-1=(3x^2-2x+3)/(x^2+1)-2`

`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x^2-2x+1)/(x^2+1)`

`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x-1)^2/(x^2+1)`

`<=>(x-1)((x-1)/(x^2+1)+1/(sqrt{2-x}+1)-1/(sqrtx+1))=0`

`<=>x-1=0<=>x=1`

Vậy `S={1}`

Kiritokidz
Xem chi tiết
KCLH Kedokatoji
8 tháng 10 2020 lúc 20:30

a) ĐK: \(x>2009;y>2010;z>2011\)

\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)

\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)

Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)

Khách vãng lai đã xóa
Kiệt Nguyễn
8 tháng 10 2020 lúc 20:38

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)

\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)

(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)

Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)

Vậy phương trình có một nghiệm duy nhất là 3

Khách vãng lai đã xóa
Khánh Ngọc
8 tháng 10 2020 lúc 21:02

a. ĐK : x > 2009 ; y > 2010 ; z > 2011 

Pt <=> \(\frac{1-\sqrt{x-2009}}{x-2009}+\frac{1-\sqrt{y-2010}}{y-2010}+\frac{1-\sqrt{z-2011}}{z-2011}=-\frac{3}{4}\)

\(\Leftrightarrow\left(\frac{1}{x-2009}-\frac{1}{\sqrt{x-2009}}+\frac{1}{4}\right)+\left(\frac{1}{y-2010}-\frac{1}{\sqrt{y-2010}}+\frac{1}{4}\right)\)

\(\left(\frac{1}{z-2011}-\frac{1}{\sqrt{z-2011}}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^2=0\\\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2=0\\\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-2009}}=\frac{1}{2}\\\frac{1}{\sqrt{y-2010}}=\frac{1}{2}\\\frac{1}{\sqrt{z-2011}}=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}}\)( tmđk )

b. ĐK : x2 - 9 \(\ge\)0 <=> x2\(\ge\)9 <=> - 3\(\le\)x\(\le\)3

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=0\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\left(tmdk\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)

TH :\(\sqrt{x+3}+\sqrt{x-3}=0\)

Vì \(\sqrt{x+3}+\sqrt{x-3}\ge0\forall x\). Dấu "=" xảy ra <=> \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)( mâu thuẫn )

Vậy pt có nghiệm duy nhất là x = 3

Khách vãng lai đã xóa
Anh Quynh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:55

a. 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$

$\Leftrightarrow \sqrt{2x}=3$

$\Leftrightarrow 2x=9$

$\Leftrightarrow x=\frac{9}{2}$ (tm)

b.

ĐKXĐ: $x\geq -2$

PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$

$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$

$\Leftrightarrow 3\sqrt{x+2}=15$

$\Leftrightarrow \sqrt{x+2}=5$

$\Leftrightarrow x+2=25$

$\Leftrightarrow x=23$ (tm)

 

Akai Haruma
30 tháng 7 2021 lúc 16:57

c.

$\sqrt{(x-2)^2}=12$

$\Leftrightarrow |x-2|=12$

$\Leftrightarrow x-2=12$ hoặc $x-2=-12$

$\Leftrightarrow x=14$ hoặc $x=-10$

e.

PT $\Leftrightarrow |2x-1|-x=3$

Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$

$\Leftrightarrow x=4$ (tm)

Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$

$\Leftrightarrow x=\frac{-2}{3}$ (tm)

 

Akai Haruma
30 tháng 7 2021 lúc 17:00

f.

ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{3(x-2)}-(x-2)=0$

$\Leftrightarrow \sqrt{x-2}(\sqrt{3}-\sqrt{x-2})=0$

$\Leftrightarrow \sqrt{x-2}=0$ hoặc $\sqrt{3}-\sqrt{x-2}=0$

$\Leftrightarrow x=2$ hoặc $x=5$ (tm)

h. ĐKXĐ: $x\leq \frac{3}{2}$

PT $\Leftrightarrow \sqrt{3-2x}=x+2$

\(\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ 3-2x=(x+2)^2=x^2+4x+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2+6x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-3+2\sqrt{2}\) (tm)

Vậy.......

hải anh thư hoàng
Xem chi tiết
Gấuu
8 tháng 8 2023 lúc 23:11

a) ĐK: \(x\ge0\)

PT \(\Leftrightarrow\sqrt{4x}\left(\dfrac{3}{4}-1-\dfrac{1}{4}\right)+5=0\)

\(\Leftrightarrow2\sqrt{x}.\left(-\dfrac{1}{2}\right)+5=0\)

\(\Leftrightarrow x=25\) (thỏa)

Vậy \(x=25\)

b) Đk: \(x\le3\)

PT \(\Leftrightarrow\sqrt{3-x}-\sqrt{9\left(3-x\right)}+\dfrac{5}{4}\sqrt{16\left(3-x\right)}=6\)

\(\Leftrightarrow\sqrt{3-x}\left(1-\sqrt{9}+\dfrac{5}{4}.\sqrt{16}\right)=6\)

\(\Leftrightarrow\sqrt{3-x}=2\Leftrightarrow x=-1\) (thỏa)

Vậy \(x=-1\)

Nguyễn Lê Phước Thịnh
8 tháng 8 2023 lúc 23:12

2:

a: 

Sửa đề: \(P=\left(\dfrac{2}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{2}{\sqrt{1-a^2}}+1\right)\)

\(P=\dfrac{2+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}:\dfrac{2+\sqrt{1-a^2}}{\sqrt{1-a^2}}\)

\(=\dfrac{2+\sqrt{1-a^2}}{\sqrt{1+a}}\cdot\dfrac{\sqrt{1-a^2}}{2+\sqrt{1-a^2}}=\sqrt{\dfrac{1-a^2}{1+a}}\)

\(=\sqrt{1-a}\)

b: Khi a=24/49 thì \(P=\sqrt{1-\dfrac{24}{49}}=\sqrt{\dfrac{25}{49}}=\dfrac{5}{7}\)

c: P=2

=>1-a=4

=>a=-3

 

Trần Minh Hiếu
8 tháng 8 2023 lúc 23:14

1a (đkxđ:\(x\ge0\)\(\Leftrightarrow\dfrac{-1}{2}.\sqrt{4x}+5=0\) \(\Leftrightarrow\sqrt{4x}=10\) \(\Leftrightarrow x=25\) (t/m)

b (đkxđ:\(x\le3\) ) \(\Leftrightarrow\sqrt{3-x}\left(1-3+1,25.4\right)=6\) \(\Leftrightarrow\sqrt{3-x}=2\) \(\Leftrightarrow x=-1\) (t/m)

Đào Thu Hiền
Xem chi tiết
ỵyjfdfj
Xem chi tiết
Võ Việt Hoàng
10 tháng 8 2023 lúc 15:24

a) ĐK: \(\left[{}\begin{matrix}x\ge0\\x\le-1\end{matrix}\right.\)

pt <=> \(\left\{{}\begin{matrix}x\ge0\\x^2+x=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x=0\left(tm\right)\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=0

b) ĐK: \(-1\le x\le1\)

pt <=> \(\left\{{}\begin{matrix}x\ge1\\1-x^2=x^2-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\2x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\2x\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=0\left(l\right)\\x=1\left(tm\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=1

c) ĐK: \(\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)

pt <=> \(\left\{{}\begin{matrix}x\ge2\\x^2-4x+3=x^2-4x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\0=1\left(l\right)\end{matrix}\right.\)

Vậy, phương trình vô nghiệm với mọi x

Nguyễn Lê Phước Thịnh
10 tháng 8 2023 lúc 15:14

a: =>x^2+x=x^2 và x>=0

=>x=0

b: =>1-x^2=(x-1)^2 và x>=1

=>1-x^2-x^2+2x-1=0 và x>=1

=>-2x^2+2x=0 và x>=1

=>-2x(x-1)=0 và x>=1

=>x=1

c: =>x^2-4x+3=(x-2)^2 và x>=2

=>x^2-4x+3=x^2-4x+4 và x>=2

=>3=4(vô lý)

=>PTVN

Emily Nain
Xem chi tiết
Lê Thị Thục Hiền
10 tháng 7 2021 lúc 20:49

a)Pt\(\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=x+\sqrt{3}\)

\(\Leftrightarrow\left|x+\sqrt{3}\right|=x+\sqrt{3}\)

\(\Leftrightarrow x+\sqrt{3}\ge0\)\(\Leftrightarrow x\ge-\sqrt{3}\)

Vậy...

b)Đk:\(x\ge4\)

Pt\(\Leftrightarrow\sqrt{\left(x-4\right)+2\sqrt{x-4}+1}=2\sqrt{x-4}+1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+1\right)^2}=1+2\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x-4}+1=2\sqrt{x-4}+1\)

\(\Leftrightarrow\sqrt{x-4}=0\)

\(\Leftrightarrow x=4\) (tm)

Vậy...

Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 20:50

a) Ta có: \(\sqrt{x^2+2x\sqrt{3}+3}=x+\sqrt{3}\)

\(\Leftrightarrow\left|x+\sqrt{3}\right|=x+\sqrt{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=x+\sqrt{3}\left(x\ge-\sqrt{3}\right)\\x+\sqrt{3}=-x-\sqrt{3}\left(x< -\sqrt{3}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-\sqrt{3}\\x=-\sqrt{3}\left(loại\right)\end{matrix}\right.\Leftrightarrow x\ge-\sqrt{3}\)

 

phamthiminhanh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 7 2021 lúc 18:37

a.

\(\Leftrightarrow\dfrac{x-\sqrt{1+x^2}+x+\sqrt{1+x^2}}{\left(x-\sqrt{1+x^2}\right)\left(x+\sqrt{1+x^2}\right)}+2=0\)

\(\Leftrightarrow\dfrac{2x}{x^2-1-x^2}+2=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow x=1\)

b.

ĐKXĐ: \(x\ge a\)

Đặt \(\sqrt{x-a}=t\ge0\Rightarrow x=t^2+a\)

Pt trở thành:

\(2\left(t^2+a\right)-5at+2a^2-2a=0\)

\(\Leftrightarrow2t^2-5at+2a^2=0\)

\(\Leftrightarrow\left(2t-a\right)\left(t-2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{a}{2}\\t=2a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-a}=\dfrac{a}{2}\\\sqrt{x-a}=2a\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{a^2}{4}+a\\x=4a^2+a\end{matrix}\right.\)