Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chung Tran
Xem chi tiết
Trên con đường thành côn...
23 tháng 8 2021 lúc 9:40

undefined

Trên con đường thành côn...
23 tháng 8 2021 lúc 9:46

undefined

ILoveMath
23 tháng 8 2021 lúc 9:44

Bài 1:

a, \(\left(x-y+2z\right)^2=x^2+y^2+4z^2-2xy-4yz+4zx\)

b, \(\left(2x-3\right)\left(2x+3\right)\left(4x^2+9\right)=\left(4x^2-9\right)\left(4x^2+9\right)=16x^4-81\)

 

Nguyễn Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 15:29

5:

a: (2x-5)(2x+5)=4x^2-25

b: (3x-5y)(3x+5y)=9x^2-25y^2

c: (3x+7y)(3x-7y)=9x^2-49y^2

d: (2x-1)(2x+1)=4x^2-1

4:

a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2

b: 8(7^2+1)(7^4+1)(7^8+1)

=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)

=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)

=1/6(7^16-1)<7^16-1

yume nijino
28 tháng 7 2023 lúc 15:48

5:

a: (2x-5)(2x+5)=4x^2-25

b: (3x-5y)(3x+5y)=9x^2-25y^2

c: (3x+7y)(3x-7y)=9x^2-49y^2

d: (2x-1)(2x+1)=4x^2-1

mik chỉ biết bài 5 thôi !

Lăng Ngọc Khuê
Xem chi tiết
Nguyễn Huy Tú
28 tháng 7 2021 lúc 12:50

undefined

Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 12:55

1) \(\left(x+1\right)^2=x^2+2x+1\)

2) \(\left(2x+1\right)^2=4x^2+4x+1\)

3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)

4) \(\left(2x+3\right)^2=4x^2+12x+9\)

5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)

6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)

7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)

8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)

9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)

10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)

Nguyễn Đăng Quyền
Xem chi tiết

\(F=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(9x^2-4\right)\\=\left[\left(3x+2\right)^2+2.\left(3x+2\right)\left(3x-2\right)+\left(3x-2\right)^2\right]\\ =\left[\left(3x+2\right)+\left(3x-2\right)\right]^2\\ =\left(6x\right)^2=36x^2\\ Thay.x=-\dfrac{1}{3}.vào.F.thu.gọn:\\ F=36x^2=36.\left(-\dfrac{1}{3}\right)^2=36.\left(\dfrac{1}{9}\right)=4\)

Đào Phúc Việt
Xem chi tiết
Yen Nhi
2 tháng 10 2021 lúc 21:32

a) \(\left(3x-2\right)^2=\left(3x\right)^2-2.3x.2+2^2=9x^2-12x+4\)

b) \(\left(\dfrac{x}{3}+y^3\right)^2=\left(\dfrac{x}{3}\right)^2+2\dfrac{x}{3}y^3+\left(y^3\right)^2=\dfrac{x^2}{9}+\dfrac{2}{3}xy^3+y^6\)

c) \(9x^2-225=\left(3x\right)^2-\left(15\right)^2=\left(3x-15\right)\left(3x+15\right)\)

Yen Nhi
2 tháng 10 2021 lúc 21:45

d) \(\left(2x-3y\right)^3=\left(2x\right)^3-3\left(2x\right)^23y+3.2x\left(3y\right)^2-\left(3y\right)^3=8x^3-3.4x^2.3y+6x.9y^2-27y^3=8x^3-36x^2y+54xy^2-27y^3\)

e) \(\left(2x^2+\dfrac{3}{2}\right)^3=\left(2x^2\right)^3+3\left(2x^2\right)^2\dfrac{3}{2}+3.2x^2\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3=8x^6+3.4x^4.\dfrac{3}{2}+6x^2.\dfrac{9}{4}+\dfrac{27}{8}=8x^6+18x^4+\dfrac{27}{2}x^2+\dfrac{27}{8}\)

f) \(\left(-2xy^2+\dfrac{1}{2}x^3y\right)^3=\left(-2xy^2\right)+3\left(-2xy^2\right)^2\dfrac{1}{2}x^3y+3\left(-2xy^2\right)\left(\dfrac{1}{2}x^3y\right)^2+\left(\dfrac{1}{2}x^3y\right)^3=-8x^3y^6+3.4x^2y^4.\dfrac{1}{2}x^3y-6xy^2.\dfrac{1}{4}x^6y^2+\dfrac{1}{8}x^9y^3=-8x^3y^6+6x^5y^5-\dfrac{3}{2}x^7y^4+\dfrac{1}{8}x^9y^3\)

Đào Phúc Việt
Xem chi tiết
Minh Hiếu
8 tháng 10 2021 lúc 20:48

a) \(=4x^2-12x+9\)

b) \(=4x^2+2x+\dfrac{1}{4}\)

c) \(=4x^2-\dfrac{4}{3}x+\dfrac{1}{9}\)

Minh Hiếu
8 tháng 10 2021 lúc 20:51

d) \(=\left(x^2+2y\right)\left(x^4-2x^2y+4y^2\right)\)

e) \(=\left(3-\dfrac{x}{2}\right)\left(9+\dfrac{3x}{2}+\dfrac{x^2}{4}\right)\)

f) \(=\left(125-4x\right)\left(125^2+500x+16x^2\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:43

a) Áp dụng công thức nhị thức Newton, ta có:

\(\begin{array}{l}{\left( {a - \frac{b}{2}} \right)^4} = C_4^0.{a^4}{\left( { - \frac{b}{2}} \right)^0} + C_4^1.{a^3}\left( { - \frac{b}{2}} \right) + C_4^2.{a^2}{\left( { - \frac{b}{2}} \right)^2} + C_4^3.a{\left( { - \frac{b}{2}} \right)^3} + C_4^4.{a^0}{\left( { - \frac{b}{2}} \right)^4}\\ = {a^4} - 2{a^3}b + \frac{3}{2}{a^2}{b^2} - \frac{1}{2}a{b^3} + \frac{1}{16}{b^4}\end{array}\)

b) Áp dụng công thức nhị thức Newton, ta có:

\(\begin{array}{l}{\left( {2{x^2} + 1} \right)^5} = C_5^0.{\left( {2{x^2}} \right)^5}{.1^0}  + C_5^1.{\left( {2{x^2}} \right)^4}.1 + C_5^2.{\left( {2{x^2}} \right)^3}{.1^2} + C_5^3.{\left( {2{x^2}} \right)^2}{.1^3} + C_5^4.\left( {2{x^2}} \right){.1^4} +C_5^5.{\left( {2{x^2}} \right)^0} {.1^5}\\ = 32{x^{10}} + 80{x^8} + 80{x^6} + 40{x^4} + 10{x^2} + 1\end{array}\).

binn2011
Xem chi tiết
huỳnh bá nhật minh
8 tháng 10 2018 lúc 11:58

why not?tại sao em ko thích anh?

Pham Van Hung
8 tháng 10 2018 lúc 11:59

\(\left(3x-2\right)^3=\left(3x\right)^3-3.\left(3x\right)^2.2+3.3x.2^2-2^3=27x^3-54x^2+36x-8\)

\(8x^3-27=\left(2x\right)^3-3^3=\left(2x-3\right)\left[\left(2x\right)^2+2x.3+3^2\right]=\left(2x-3\right)\left(4x^2+6x+9\right)\)

\(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+x^2.3+3^2\right]=x^6-27\)

‏
14 tháng 10 2018 lúc 12:32

thằng dở

Triệu Nguyễn Gia Huy
Xem chi tiết
Đỗ Thanh Tùng
5 tháng 7 2016 lúc 14:22

a\(=\frac{1}{4}x^2+2.\frac{1}{2}x.1+1=\frac{1}{4}x^2+x+1\)

b\(=4x^2-2.2x.\frac{1}{3}+\frac{1}{9}=4x^2-\frac{4}{3}x+\frac{1}{9}\)

Bạn học tốt nha >>>>>>

nha

o0 KISS MOSS 0o
5 tháng 7 2016 lúc 14:44

a/\(\left(\frac{1}{2}x+1\right)^2=\frac{1}{4}x^2+x+1^2\)

b/\(\left(2x-\frac{1}{3}\right)^3=8x^3-2x+\frac{2}{3}x-\frac{1}{27}\)

k nha