Tìm x ∈ Z, biết:
a) -5 < x < 0; b) -3 < x < 3.
Tìm \(Z \) biết:
a) \((x-5)(x+2)<0\)
b) \((x^2-5)(x^2-14)<0\)
\(a,\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5< 0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5>0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 5\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x>5\\x< -2\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< x< 5\\ \Rightarrow x\in\left\{-1;0;1;2;3;4\right\}\\ b,\Rightarrow5< x^2< 14\\ \Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
4. Tìm x
Z biết:
a) | 2x – 5 | = 13
b) 7x + 3| = 66
c) | 5x – 2| 0
`a)|2x-15|=13`
`**2x-15=13`
`<=>2x=28`
`<=>x=14.`
`**2x-15=-13`
`<=>2x=-2`
`<=>x=-1.`
`b)|7x+3|=66`
`**7x+3=66`
`<=>7x=63`
`<=>x9`
`**7x+3=-66`
`<=>7x=-69`
`<=>x=-69/7`
`c)|5x-2|=0`
`<=>5x-2=0`
`<=>5x=2`
`<=>x=2/5`
\(a,\Leftrightarrow\left[{}\begin{matrix}2x-5=13\\2x-5=-13\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-4\end{matrix}\right.\)
Vậy ...
\(b,\Leftrightarrow\left[{}\begin{matrix}7x+3=66\\7x+3=-66\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-\dfrac{69}{7}\end{matrix}\right.\)
Vậy ...
\(c,\Leftrightarrow5x-2=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy ...
a \(\Rightarrow\left[{}\begin{matrix}2x-5=13\\2x-5=-13\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=18\\2x=-8\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=9\\x=-4\end{matrix}\right.\)
b \(\Rightarrow\left[{}\begin{matrix}7x+3=66\\7x+3=-66\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}7x=63\\7x=-69\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=9\\x=-\dfrac{69}{7}\end{matrix}\right.\)
c \(\Rightarrow5x-2=0\Rightarrow x=\dfrac{2}{5}\)
a)
\(x+\left(x+2\right)+\left(x+4\right)+...+\left(x+98\right)=0\)
\(x+x+2+x+4+...+x+98=0\)
\(50x+\left(98+2\right).\left[\left(98-2\right):2+1\right]:2=0\)
\(50x+100.49:2=0\)
\(50x+49.50=0\)
\(50x=0-49.50\)
\(50x=-2450\)
\(x=-2450:50\)
\(x=-49\)
b)
\(\left(x-5\right)+\left(x-4\right)+\left(x-3\right)+...+\left(x+11\right)+\left(x+12\right)=99\)
\(x+x+x+...+x-5-4-3-...+11+12=99\)
\(18x+6+7\text{+ 8 + 9 + 10 + 11 + 12 = 99}\)
\(18x+63=99\)
\(18x=99-63\)
\(18x=36\)
\(x=36:18\)
\(x=2\)
a) x + (x + 2) + (x + 4) + ... + (x + 98) = 0
x + x + 2 + x + 4 + ... + x + 98 = 0
50x + (98 + 2).[(98 - 2) : 2 + 1]:2 = 0
50x + 100 .49 : 2 = 0
50x + 49.50 = 0
50x = 0 - 49.50
50x = -2450
x = -2450 : 50
x = -49
b) (x - 5) + (x - 4) + (x - 3) + ... + (x + 11) + (x + 12) = 99
x + x + x + ... + x - 5 - 4 - 3 - ... + 11 + 12 = 99
18x + 6 + 7 + 8 + 9 + 10 + 11 + 12 = 99
18x + 63 = 99
18x = 99 - 63
18x = 36
x = 36 : 18
x = 2
Tìm x∈Z, biết:
a)x.(x-6)=0
b)(-7-x).(-x+5)=0
c)(x+3).(x-7)=0
d)(x-3).(x2+12)=0
e)(x+1).(2-x) ≥0
f)(x-3).(x-5) ≤0
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
c) => \(\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
tìm x,y,z biết:a)2019-|x-2019|=x
b)(2x-1)2008+(y-2/5)2008+|x+y+z|=0
ta có: |x-2019|>=0 với mọi x
=>2019-|x-2019|<=2019-0=2019 với mọi x
=>x<=2019
=>2019-|x-2019|=2019-2019-x=-x=x
=>x=0
Tìm x;y;z biết:
a) \(\dfrac{x}{-5}=\dfrac{y}{-7}=\dfrac{z}{2}\) và x - y + z = -28
a: =>\(\dfrac{x}{-5}=\dfrac{y}{-7}=\dfrac{z}{2}=\dfrac{x-y+z}{-5+7+2}=\dfrac{-28}{4}=-7\)
=>x=35; y=49; z=-14
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/-5=y/-7=z/2=(x-y+z)/((-5)-(-7)+2)=-28/4=-7`
`-> x/-5=y/-7=z/2=-7`
`-> x=-7*-5=35, y=-7*-7=49, z=-7*2=-14`
tìm số nguyên x,y,z biết:
a)3/x-5=5/x+1
b)3/x-5=-4/x+2
a: =>3x+3=5x-25
=>-2x=-28
hay x=14
b: =>3x+6=-4x+20
=>7x=14
hay x=2
tìm x thuộc Z biết:a) (-x2-7).(x+1)>0
b)(x-2).(x+2)<0
Bài 2: Tìm x,y,z biết:
a)\(\left(x-1\right)\)\(:\)\(\dfrac{2}{3}\)=\(\dfrac{-2}{5}\)
b) \(\left|x-\dfrac{1}{2}\right|-\dfrac{1}{3}=0\)
c) \(\left|4x+2\right|=\left|6+2x\right|\)
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
Tìm x, y ∈ Z biết:
a, (x - 3)(y + 5) = 11
b, (2x + 1)(6 - y) = 12
Lời giải:
a. Vì $x,y$ thuộc $Z$ nên $x-3, y+5\in\mathbb{Z}$. Tích của chúng $=11$ nên ta có bảng sau:
x-3 | 1 | 11 | -1 | -11 |
y+5 | 11 | 1 | -11 | -1 |
x | 4 | 14 | 2 | -8 |
y | 6 | -4 | -16 | -6 |
b. Vì $x,y\in\mathbb{Z}$ nên $2x+1, 6-y\in\mathbb{Z}$.
Với $x$ nguyên thì $2x+1$ là số nguyên lẻ nên ta có bảng sau:
2x+1 | 1 | -1 | 3 | -3 |
6-y | 12 | -12 | 4 | -4 |
x | 0 | -1 | 1 | -2 |
y | -6 | 18 | 2 | 10 |