Thực hiện phép tính : A = 2100 - 299 - 298 - ...... - 22 - 2 - 1
Tính
A= 2100 - 299 - 298 - 297 - .......... - 22 - 2 - 1
\(A=2^{100}-\left(2^{99}+2^{98}+...+2+1\right)\)
Đặt \(B=2^{99}+2^{98}+...+2+1\)
\(\Rightarrow2B=2^{100}+2^{99}+...+2^2+2\)
\(\Rightarrow2B-B=2^{100}-1\Leftrightarrow B=2^{100}-1\)
\(\Rightarrow A=2^{100}-\left(2^{100}-1\right)=1\)
A=2100-299+298-297+...-23+22-2+1
HELP ME
\(A=2^{100}-2^{99}+2^{98}-2^{97}+....-2^3+2^2-2+1\\ A=\left(2^{100}+2^{98}+...+2\right)-\left(2^{99}+2^{97}+...+1\right)\)
Gọi \(\left(2^{100}+2^{98}+...+2\right)\)là B
\(B=\left(2^{100}+2^{98}+...+2\right)\\ 2B=2^{102}+2^{100}+.....+2^2\\ 2B-B=\left(2^{102}+2^{100}+.....+2^2\right)-\left(2^{100}+2^{98}+...+2\right)\\ B=2^{102}-2\)
Gọi \(\left(2^{99}+2^{97}+...+1\right)\) là C
\(C=\left(2^{99}+2^{97}+...+1\right)\\ 2C=2^{101}+2^{99}+....+2\\ 2C-C=\left(2^{101}+2^{99}+9^{97}+...+2\right)-\left(2^{99}+9^{97}+...+1\right)\\ C=2^{101}-1\)
\(A=B+C\\ =>A=2^{102}-2+2^{101}-1\\ A=2^{101}\left(2+1\right)-3\\ A=2^{101}\cdot3-3\\ A=3\cdot\left(2^{101}-1\right)\)
\(\dfrac{1}{2}A=2^{99}-2^{98}+...-1+\dfrac{1}{2}\\ \Rightarrow A-\dfrac{1}{2}A=2^{100}-\dfrac{1}{2}\\ \Rightarrow A=2^{101}-1\)
Tính:
A=2100-299-298-...-22-2-1
Ta có: \(A=2^{100}-2^{99}-2^{98}-...-2^2-2-1\)
\(\Leftrightarrow2A=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2\)
\(\Leftrightarrow2A-A=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2-2^{100}+2^{99}+2^{98}+...+2^2+2+1\)
\(\Leftrightarrow A=2^{101}-2\cdot2^{100}+1\)
\(\Leftrightarrow A=1\)
a, A = 1 + 2 + 22 + 23 + ... + 250 =
b, B = 1 + 3 + 32 + 33 + ... 3100 =
c, C = 5 + 52 + 53 + ... 530 =
d, D = 2100 = 299 + 298 - 297 + ... + 22 - 2
a) \(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)
b) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+...+3^{101}\)
\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)
\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)
c) \(C=5+5^2+...+5^{30}\)
\(\Rightarrow5C=5^2+5^3+...+5^{31}\)
\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)
\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)
d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)
\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)
\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)
a)[600-(40:23+3.53)]:5 b)16.122-(4.232-59.4)
c)2100-(1+2+22+23+...+299) d)169.20110-17.(83-1702:23+12012)+27:24
Đề bài:Thực hiện phép tính
a: \(\left[600-\left(40:2^3+3\cdot5^3\right)\right]:5\)
\(=\left[600-5-375\right]:5\)
\(=44\)
b: \(16\cdot12^2-\left(4\cdot23^2-59\cdot4\right)\)
\(=16\cdot144-4\cdot\left(23^2-59\right)\)
\(=2304-4\cdot470\)
\(=424\)
c: Ta có: \(2^{100}-\left(1+2+2^2+2^3+...+2^{99}\right)\)
\(=2^{100}-2^{100}+1\)
=1
d: Ta có: \(169\cdot2011^0-17\cdot\left(83-1702:23+1^{2012}\right)+2^7:2^4\)
\(=169-17\cdot\left(83-74+1\right)+2^3\)
\(=177-17\cdot10\)
=7
CMR :
2100 - 299 + 298 - 297 + ...... + 24 - 23 + 22 ⋮ 12
\(2^{100}-2^{99}+2^{98}-2^{97}+2^{96}-2^{95}+...+2^4-2^3+2^2\)
\(=\left(2^{100}-2^{99}+2^{98}\right)-\left(2^{97}-2^{96}+2^{95}\right)+...+\left(2^4-2^3+2^2\right)\)
\(=2^{96}\left(2^4-2^3+2^2\right)-2^{93}\left(2^4-2^3+2^2\right)+...+\left(2^4-2^3+2^2\right)\)
\(=12\left(2^{96}-2^{93}+...+1\right)⋮12\)
S=2100-299+298+...+22-2
giúp tớ vs aaa
tớ cảm ơn
Sửa đề: \(S=2^{100}-2^{99}+2^{98}-...+2^2-2\)
=>\(2\cdot S=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
=>\(2S+S=2^{100}-2^{99}+2^{98}-...+2^2-2+2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
=>\(3S=2^{101}-2\)
=>\(S=\dfrac{2^{101}-2}{3}\)
Thực hiện các phép tính sau một hay hợp lý : A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - .... + 298 - 299 - 300 + 301 + 302 - 303
A = 1+2-3-4 + 5+6-7-8 +9+10-11-12+...+297+298-299-300 + 301+302-303
Xét dãy số: 1;2;3;4;5...;302;303
Dãy số trên là dãy số cách đều, có số số hạng là:
(303 - 1): 1 + 1 = 303 (số hạng)
Vì 303 : 4 = 75 dư 3
Nhóm bốn số hạng liên tiếp của A thành một nhóm thì A là tổng của 75 nhóm và biểu thức: B = 301 + 302 - 303
Mối nhóm có giá trị là: 1 + 2 - 3 - 4 = - 4
A = -4 x 75 + 301 + 302 - 303
A = - 300 + 301 + 302 - 303
A = 1 + 302 - 303
A = 303 - 303
A = 0
Vậy A = 0
Thực hiện các phép tính sau một cách hợp lí :A=1+2-3-4+5+6-7-8+9+10-11-...+298-299+300+301+302-303
Lời giải:
$A=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+....+(297+298-299-300)+301+302-303$
$=(-4)+(-4)+(-4)+....+(-4)+300$
Số lần xuất hiện của $-4$ là:
$[(300-1):1+1]:4=75$
$A=(-4),75+300=0$
1. Tính:
A= 2100 - 299 -298 - 297 - ......- 22 - 2 - 1
2. Cho dãy số: a1 ; a2 ; a3 ;.....; a100. Trong đó: a1 = 1 ; a2 = -1 ; ak= ak-2 . ak-1
( k thuộc N ; k lớn hơn hoặc bằng 3 )
3. Tính các số nguyên x ; y biết:
a) ( x + 1) ( x - 2 ) = 0
b) ( x - 2 ) ( y - 2 ) = 5