Chứng minh rằng nếu (a^2+b^2)(x^2+y^2)=(ax+by)^2 thì ay-bx=0
Chứng minh rằng nếu (a2 +b 2)(x2+y2) = (ax + by )2 thì ay- bx=0
Chứng minh rằng nếu ( a2 + b2 )( x2 + y2 ) = ( ax +by )2 thì ay - bx = 0
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)
\(\Leftrightarrow ay=bx\)
\(\Leftrightarrow ay-bx=0\)
( Bất đẳng thức Bu - nhi - a - cốp - xki )
Chứng minh rằng nếu \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\) thì \(ay-bx=0\)
Áp dụng BĐT Bunhiacopxki :
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)
\(\Leftrightarrow ay=bx\)
\(\Leftrightarrow ay-bx=0\)
Ta có đpcm.
Chứng minh rằng : (x^2 + y^2 )(a^2 + b^2) = (ax +by )^2 + (ay - bx)^2
Ta có:
VT = (x2 + y2)(a2 + b2)
= x2a2 + x2b2 + y2a2 + y2b2
= (a2x2 + b2y2 + 2axby) + (a2y2 - 2aybx + b2x2)
= (ax + by)2 + (ay - bx)2
=> VT = VP => đpcm
CM nếu (a^2+b^2) .(x^2+y^2)=(ax+by)^2 thì ay-bx=0
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=x^2\left(a^2+b^2\right)+y^2\left(a^2+b^2\right)\)
\(=a^2x^2+b^2x^2+a^2y^2+b^2y^2\)
\(\left(ax+by\right)^2=a^2x^2+2abxy+b^2y^2\)
\(\Rightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2y^2+2abxy+b^2y^2\)
\(\Leftrightarrow a^2x^2+b^2x^2=2abxy\)
\(\Leftrightarrow a^2x^2+b^2x^2-2abxy=0\)
\(\Leftrightarrow\left(ax-bx\right)^2=0\)
\(\Leftrightarrow ax-bx=0\left(đpcm\right)\)
a)Cho (a+b)^2 = 4ab . Chứng minh rằng a=b
b)Cho (a^2+b^2)(x^2+y^2)=(ax+by)^2 . Chứng minh rằng ay=bx
a) Ta có: \(\left(a+b\right)^2=4ab\)<=> \(a^2+b^2+2ab=4ab\)
<=> \(a^2-2ab+b^2=0\)
<=> \(\left(a-b\right)^2=0\)=> a=b (đpcm)
b) Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
<=> \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
<=> \(a^2y^2+b^2x^2-2axby=0\)
<=>\(\left(ay-bx\right)^2=0\)
<=>ay=bx(đpcm)
1/ Chứng minh rằng: (x-y)^2-(x+y)^2=-4xy
2/Chứng minh: (7n-2)^2-(2n-7)^2 luôn luôn chia hết cho 9, với mọi n thuộc gái trị nguyên
3/ Tìm giá trị lớn nhất của biểu thức F=-x^2+6x+1
4/ Chứng minh rằng nếu (a^2+b^2)(x^2+y^2)=(ax=by)^2 thì ay-bx=0
1) ( x - y)2 - ( x + y)2 = -4xy
\(\Leftrightarrow\)( x - y - x + y ) ( x - y + x + y ) = -4xy
\(\Leftrightarrow\)2x + 4xy = 0
\(\Leftrightarrow\)2x ( 1 + 2y ) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=0\\1+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}0\\-\dfrac{1}{2}\end{matrix}\right.\)
2) ( 7n -2)2 - ( 2n - 7)2
= ( 7n - 2 - 2n - 7 )( 7n - 2 + 2n - 7 )
= ( 5n - 9 )( 9n - 9 )
Ta có: 9n \(⋮\) 9 với mọi n
9 \(⋮\) 9 với mọi n
\(\Rightarrow\)9n - 9 \(⋮\) 9 với mọi n
\(\Rightarrow\) đpcm
3) F = x2 + 6x + 1
F = x2 + 2.x.3 + 9 - 8
F = ( x + 3 )2 - 8
Vì ( x + 3)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) ( x + 3 )2 - 8 \(\ge\) -8 với mọi x
\(\Rightarrow\) F \(\ge\) -8 với mọi x
Vậy min F = -8 \(\Leftrightarrow\) ( x + 3 )2 = 0
\(\Leftrightarrow\) x = -3
1. Ta có: \(\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y+x+y\right)\left(x-y-x-y\right)=2x.\left(-2y\right)=-4xy\)
2. Ta có: \(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)=\left(5n+5\right)\left(9n-9\right)=9\left(n-1\right)\left(5n+5\right)\)
\(\Rightarrow\left(7n-2\right)^2-\left(2n-7\right)^2\) chia hết cho 9 với mọi giá trị nguyên của n.
3. Ta có: \(F=-x^2+6x+1=-\left(x^2-6x-1\right)=-\left(x^2-6x+9-10\right)=-\left(x-3\right)^2+10\)
Vì \(-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2+10\le10\)
=> MaxF=10 <=> \(-\left(x-3\right)^2+10=10\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy MaxF=10 khi x=3.
4. Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2abxy-b^2y^2=0\Leftrightarrow a^2y^2+b^2x^2-2abxy=0\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\)
=> đpcm.
Chứng minh rằng:
(a2+b2)(x2+y2) = (ax+by)2-(ay+bx)2
Bạn viết đề sai tứ tung luôn :v
Điều cần phải chứng minh:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax-by\right)^2+\left(ay+bx\right)^2\)
\(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(VP=\left(ax-by\right)^2+\left(ay+bx\right)^2\)
\(=a^2x^2-2axby+b^2y^2+a^2y^2+2axby+b^2x^2\)
\(=a^2x^2+b^2y^2+a^2y^2+b^2x^2\)
\(VT=VP\rightarrowđpcm\)
Chứng minh
a) Nếu ( a^2+b^2 ) ( x^2+y^2) = ( ax +by ) với x,y khác 0 thì ay = by
b) Nếu ( a+b)^2 = 2 ( a^2+b^2 ) thì a=b
c) Nếu a^2+b^2+c^2=ab+ac+bc thì a=b=c
giải cách làm giup minh nha ai nhanh minh tick