Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Ngọc Hà
Xem chi tiết
Lê Thị Xuân Niên
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
13 tháng 7 2018 lúc 19:47

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)

\(\Leftrightarrow ay=bx\)

\(\Leftrightarrow ay-bx=0\)

( Bất đẳng thức Bu - nhi - a - cốp - xki )

Đoàn Phương Linh
Xem chi tiết
Trần Thanh Phương
29 tháng 8 2019 lúc 6:10

Áp dụng BĐT Bunhiacopxki :

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

\(\Leftrightarrow ay=bx\)

\(\Leftrightarrow ay-bx=0\)

Ta có đpcm.

tram nguyen
Xem chi tiết
Edogawa Conan
21 tháng 7 2019 lúc 8:18

Ta có:

VT = (x2 + y2)(a2 + b2)

= x2a2 + x2b2 + y2a2 + y2b2

= (a2x2 + b2y2 + 2axby) + (a2y2 - 2aybx + b2x2)

= (ax + by)2 + (ay - bx)2

=> VT = VP => đpcm

binh nguyen duc
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
27 tháng 8 2019 lúc 19:13

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=x^2\left(a^2+b^2\right)+y^2\left(a^2+b^2\right)\)

\(=a^2x^2+b^2x^2+a^2y^2+b^2y^2\)

\(\left(ax+by\right)^2=a^2x^2+2abxy+b^2y^2\)

\(\Rightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2y^2+2abxy+b^2y^2\)

\(\Leftrightarrow a^2x^2+b^2x^2=2abxy\)

\(\Leftrightarrow a^2x^2+b^2x^2-2abxy=0\)

\(\Leftrightarrow\left(ax-bx\right)^2=0\)

\(\Leftrightarrow ax-bx=0\left(đpcm\right)\)

Hà Phương Linh
Xem chi tiết
Lương Ngọc Anh
24 tháng 6 2016 lúc 16:39

a) Ta có: \(\left(a+b\right)^2=4ab\)<=> \(a^2+b^2+2ab=4ab\)

                                               <=> \(a^2-2ab+b^2=0\)

                                                <=> \(\left(a-b\right)^2=0\)=> a=b (đpcm)

b) Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

<=> \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

<=> \(a^2y^2+b^2x^2-2axby=0\)

<=>\(\left(ay-bx\right)^2=0\)

<=>ay=bx(đpcm)

erza sarlet
Xem chi tiết
Nguyễn Minh Tâm
5 tháng 9 2017 lúc 19:29

1) ( x - y)2 - ( x + y)2 = -4xy
\(\Leftrightarrow\)( x - y - x + y ) ( x - y + x + y ) = -4xy
\(\Leftrightarrow\)2x + 4xy = 0
\(\Leftrightarrow\)2x ( 1 + 2y ) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=0\\1+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}0\\-\dfrac{1}{2}\end{matrix}\right.\)

2) ( 7n -2)2 - ( 2n - 7)2
= ( 7n - 2 - 2n - 7 )( 7n - 2 + 2n - 7 )
= ( 5n - 9 )( 9n - 9 )
Ta có: 9n \(⋮\) 9 với mọi n
9 \(⋮\) 9 với mọi n
\(\Rightarrow\)9n - 9 \(⋮\) 9 với mọi n
\(\Rightarrow\) đpcm

3) F = x2 + 6x + 1
F = x2 + 2.x.3 + 9 - 8
F = ( x + 3 )2 - 8
Vì ( x + 3)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) ( x + 3 )2 - 8 \(\ge\) -8 với mọi x
\(\Rightarrow\) F \(\ge\) -8 với mọi x
Vậy min F = -8 \(\Leftrightarrow\) ( x + 3 )2 = 0
\(\Leftrightarrow\) x = -3

Trần Thiên Kim
5 tháng 9 2017 lúc 19:32

1. Ta có: \(\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y+x+y\right)\left(x-y-x-y\right)=2x.\left(-2y\right)=-4xy\)

2. Ta có: \(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)=\left(5n+5\right)\left(9n-9\right)=9\left(n-1\right)\left(5n+5\right)\)

\(\Rightarrow\left(7n-2\right)^2-\left(2n-7\right)^2\) chia hết cho 9 với mọi giá trị nguyên của n.

3. Ta có: \(F=-x^2+6x+1=-\left(x^2-6x-1\right)=-\left(x^2-6x+9-10\right)=-\left(x-3\right)^2+10\)

\(-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2+10\le10\)

=> MaxF=10 <=> \(-\left(x-3\right)^2+10=10\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy MaxF=10 khi x=3.

4. Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2abxy-b^2y^2=0\Leftrightarrow a^2y^2+b^2x^2-2abxy=0\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\)

=> đpcm.

Cathy Trang
Xem chi tiết
 Mashiro Shiina
16 tháng 7 2017 lúc 6:50

Bạn viết đề sai tứ tung luôn :v

Điều cần phải chứng minh:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax-by\right)^2+\left(ay+bx\right)^2\)

\(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)

\(VP=\left(ax-by\right)^2+\left(ay+bx\right)^2\)

\(=a^2x^2-2axby+b^2y^2+a^2y^2+2axby+b^2x^2\)

\(=a^2x^2+b^2y^2+a^2y^2+b^2x^2\)

\(VT=VP\rightarrowđpcm\)

Nguyễn Đào Tuấn Hưng
Xem chi tiết