Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
erza sarlet

1/ Chứng minh rằng: (x-y)^2-(x+y)^2=-4xy

2/Chứng minh: (7n-2)^2-(2n-7)^2 luôn luôn chia hết cho 9, với mọi n thuộc gái trị nguyên

3/ Tìm giá trị lớn nhất của biểu thức F=-x^2+6x+1

4/ Chứng minh rằng nếu (a^2+b^2)(x^2+y^2)=(ax=by)^2 thì ay-bx=0

Nguyễn Minh Tâm
5 tháng 9 2017 lúc 19:29

1) ( x - y)2 - ( x + y)2 = -4xy
\(\Leftrightarrow\)( x - y - x + y ) ( x - y + x + y ) = -4xy
\(\Leftrightarrow\)2x + 4xy = 0
\(\Leftrightarrow\)2x ( 1 + 2y ) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=0\\1+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}0\\-\dfrac{1}{2}\end{matrix}\right.\)

2) ( 7n -2)2 - ( 2n - 7)2
= ( 7n - 2 - 2n - 7 )( 7n - 2 + 2n - 7 )
= ( 5n - 9 )( 9n - 9 )
Ta có: 9n \(⋮\) 9 với mọi n
9 \(⋮\) 9 với mọi n
\(\Rightarrow\)9n - 9 \(⋮\) 9 với mọi n
\(\Rightarrow\) đpcm

3) F = x2 + 6x + 1
F = x2 + 2.x.3 + 9 - 8
F = ( x + 3 )2 - 8
Vì ( x + 3)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) ( x + 3 )2 - 8 \(\ge\) -8 với mọi x
\(\Rightarrow\) F \(\ge\) -8 với mọi x
Vậy min F = -8 \(\Leftrightarrow\) ( x + 3 )2 = 0
\(\Leftrightarrow\) x = -3

Trần Thiên Kim
5 tháng 9 2017 lúc 19:32

1. Ta có: \(\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y+x+y\right)\left(x-y-x-y\right)=2x.\left(-2y\right)=-4xy\)

2. Ta có: \(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)=\left(5n+5\right)\left(9n-9\right)=9\left(n-1\right)\left(5n+5\right)\)

\(\Rightarrow\left(7n-2\right)^2-\left(2n-7\right)^2\) chia hết cho 9 với mọi giá trị nguyên của n.

3. Ta có: \(F=-x^2+6x+1=-\left(x^2-6x-1\right)=-\left(x^2-6x+9-10\right)=-\left(x-3\right)^2+10\)

\(-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2+10\le10\)

=> MaxF=10 <=> \(-\left(x-3\right)^2+10=10\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy MaxF=10 khi x=3.

4. Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2abxy-b^2y^2=0\Leftrightarrow a^2y^2+b^2x^2-2abxy=0\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\)

=> đpcm.


Các câu hỏi tương tự
Lê Hoàng
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Hiếu Minh
Xem chi tiết
Lê Thúy Kiều
Xem chi tiết
Phương Uyên
Xem chi tiết
Trung Art
Xem chi tiết
Trung Art
Xem chi tiết
OP︵JACK-FF
Xem chi tiết
Trung Art
Xem chi tiết