Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vn jat
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 10 2020 lúc 18:19

\(\frac{P}{\sqrt{6}}=\sum\frac{1}{\sqrt{6}}.\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{1}{2}\sum\left(\frac{1}{6}+\frac{1}{2x^2+y^2+3}\right)\)

\(\frac{P}{\sqrt{6}}\le\frac{1}{4}+\frac{1}{2}\sum\frac{1}{2\left(x^2+1\right)+\left(y^2+1\right)}\le\frac{1}{4}+\frac{1}{2}\sum\frac{1}{4x+2y}\)

\(\frac{P}{\sqrt{6}}\le\frac{1}{4}+\frac{1}{4}\sum\frac{1}{x+x+y}\le\frac{1}{4}+\frac{1}{36}\left(\frac{2}{x}+\frac{1}{y}+\frac{2}{y}+\frac{1}{z}+\frac{2}{z}+\frac{1}{x}\right)\)

\(\frac{P}{\sqrt{6}}\le\frac{1}{4}+\frac{1}{12}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\)

\(\Rightarrow P\le\frac{\sqrt{6}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa
trần cẩm tú
Xem chi tiết
Khởi My
Xem chi tiết
Khôi Bùi
27 tháng 4 2019 lúc 17:20

Theo GT : \(xy+yz+xz=3xyz\Rightarrow\frac{xy+yz+xz}{xyz}=3\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

\(\frac{x^3}{x^2+z}=\frac{x\left(x^2+z\right)}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\ge x-\frac{xz}{2x\sqrt{z}}=x-\frac{\sqrt{z}}{2}\)

Tương tự , ta có : \(\frac{y^3}{y^2+x}\ge y-\frac{\sqrt{x}}{2}\) ; \(\frac{z^3}{z^2+y}\ge z-\frac{\sqrt{y}}{2}\)

\(\Rightarrow\frac{x^3}{x^2+z}+\frac{y^3}{y^2+z}+\frac{z^3}{z^2+y}\ge x+y+z-\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{2}\)

Vì x ; y ; z dương , áp dụng BĐT Cô - si , ta có :

\(x+1\ge2\sqrt{x};y+1\ge2\sqrt{y};z+1\ge2\sqrt{z}\)

\(\Rightarrow x+y+z+3\ge2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

=> \(\frac{x+y+z+3}{2}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\) => BĐT được c/m

Tiếp tục AD BĐT Cô - si , ta có :

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

\(\Rightarrow x+y+z\ge\frac{9}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=\frac{9}{3}=3\) => BĐT được c/m

Có : \(\frac{x^3}{x^2+z}+\frac{y^3}{y^2+x}+\frac{z^3}{z^2+y}\ge x+y+z-\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{2}\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{2}\ge\frac{3.3-3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

Vậy ...

Nguyễn Thu Trà
Xem chi tiết
Akai Haruma
25 tháng 5 2019 lúc 21:41

Lời giải:
Áp dụng BĐT AM-GM ta có:

\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)

\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)

Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Cauchy-Schwarz:

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)

\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)

\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)

Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)

Do đó \(\text{VT}\geq \text{VP}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z=1$


Lê Đình Quân
Xem chi tiết
Nguyễn Hoàng
21 tháng 2 2020 lúc 22:18

a) + \(x^3+y^3+1=\left(x+y\right)\left(x^2-xy+y^2\right)+1\ge\left(x+y\right)\left(2xy-xy\right)+xyz=xy\left(x+y+z\right)\)

Dấu "=" \(\Leftrightarrow x=y\)

+ Tương tự : \(y^3+z^3+1\ge yz\left(x+y+z\right)\). Dấu "=" \(\Leftrightarrow y=z\)

\(z^3+x^3+1\ge xz\left(x+y+z\right)\). Dấu "=" \(\Leftrightarrow x=z\)

Do đó: \(A\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)

Dấu "=" \(\Leftrightarrow x=y=z=1\)

b) Bn đã từng hỏi và cũng là mk trả lời hehe

Khách vãng lai đã xóa
Trần Tuấn Kiệt
Xem chi tiết
Hoàng Thúy An
2 tháng 8 2020 lúc 11:01

2, a,đkxđ \(x\ne-3;x\ne2\)

mình giải luôn nhé k ghi lại đề nữa

\(=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)-5-1\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2+3x-4x-12}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x-4}{x-2}\)

b,\(M=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)

để M nguyên thì \(\frac{2}{x-2}\) nguyên=>x - 2 là ước của 2,\(Ư_{\left(2\right)}=\left\{-2;-1;1;2\right\}\)

x - 2 = -2 <=> x = 0

x - 2 = -1 <=> x = 1

x - 2 = 1 <=> x = 3

x - 2 =2 <=> x = 4

vậy x = {0;1;3;4}

Nguyễn Thị Ngọc Hân
2 tháng 8 2020 lúc 21:28

a) \(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}:\frac{x-1+x^2+x+2}{x^2-1}\)

=\(\frac{2x+2}{\left(x+1\right)^2}=\frac{2\left(x+1\right)}{\left(x+1\right)^2}=2\)

Trần Đạt
Xem chi tiết
Hoàng Việt Hà
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 10 2020 lúc 23:44

\(\frac{x}{1+y^2}=\frac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{1}{2}xy\)

Tương tự: \(\frac{y}{1+z^2}\ge y-\frac{1}{2}yz\) ; \(\frac{z}{1+x^2}\ge z-\frac{1}{2}zx\)

Cộng vế với vế:

\(P\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge x+y+z-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
11 tháng 10 2020 lúc 0:04

Đề bài sai.

Phản ví dụ: \(x=-1;y=0;z=4\) thì \(VT=1< \frac{3}{2}\)

Nguyễn Ngọc Bảo Quang
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 6 2019 lúc 8:18

\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}=\sqrt{\left(x+y+z\right)^2+\frac{81}{16\left(x+y+z\right)^2}+\frac{1215}{16\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2\sqrt{\frac{81\left(x+y+z\right)^2}{16\left(x+y+z\right)^2}}+\frac{1215}{16.\left(\frac{3}{2}\right)^2}}=\frac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(z=y=z=\frac{1}{2}\)

Le quy mui
Xem chi tiết
Thánh Cứu Thế
18 tháng 1 2017 lúc 19:46

ko biết

Nguyễn Quang Tùng
18 tháng 1 2017 lúc 21:20

câu này thi bn quy đòng bình thường mà tính thôi 

khai triển ra 

rồi tạo ra x= y để thay vào bạn cứ biến đổi 

như vậy thì sẽ ra thôi

alibaba nguyễn
19 tháng 1 2017 lúc 8:52

\(\frac{y}{x^3-1}-\frac{x}{y^3-1}=\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}\)

\(=-\frac{1}{x^2+x+1}+\frac{1}{y^2+y+1}=\frac{x^2+x-y^2-y}{x^2y^2+x^2y+xy^2+xy+x^2+y^2+1+x+y}\)

\(=\frac{\left(x-y\right)\left(x+y+1\right)}{x^2y^2+2xy+x^2+y^2+2}=\frac{2\left(x-y\right)}{x^2y^2+3}\)