bài 1) rút gọn
1) 5√\(\frac{1}{5}\) 2)\(\frac{12}{5}\)√\(\frac{5}{4}\) 3)\(\frac{30}{5\sqrt{6}}\) 4) \(\frac{20}{2\sqrt{5}}\) 5)\(\frac{2-\sqrt{2}}{\sqrt{2}}\) 6) \(\frac{11+\sqrt{11}}{1+\sqrt{ }11}\) 7) \(\frac{\sqrt{21-\sqrt{7}}}{1-\sqrt{3}}\) 8)\(\frac{\sqrt{2+\sqrt{3}}}{2+\sqrt{6}}\) 9)\(\frac{\sqrt{10-\sqrt{2}}}{\sqrt{5-}1}\) 10)\(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt[]{2}}\)
bài 2) với các biểu thức đã cho là có nghĩa và rút gọn
1)\(\frac{x-\sqrt{x}}{\sqrt{x}-1}\) 2)\(\frac{x\sqrt{x}-2x}{2-\sqrt{x}}\) 3) \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\) 4) \(\frac{a\sqrt{b}-\sqrt{a}}{\sqrt{b}-b\sqrt{a}}\) 5) \(\frac{a-1}{\sqrt{a}+1}\) 6) \(\frac{4-x}{2\sqrt{x}-x}\) 7)\(\frac{a+1+2\sqrt{a}}{1+\sqrt{a}}\) 8)\(\frac{3\sqrt{x}-x}{3+2\sqrt{3x}-x}\) 9)\(\frac{y+12-4\sqrt{3y}}{y-12}\) 10)\(\frac{4\sqrt{x}-x-4}{x-4}\) 11)\(\frac{x+y-2\sqrt{xy}}{x\sqrt{y}-y\sqrt{x}}\)
Bài 1: Cho biểu thức: M = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x+3}}{2-\sqrt{x}}\)
Tìm điều kiện để M có nghĩa, rút gọn M
Bài 2: Cho biểu thức: A= [(\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\)).\(\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\)] : \(\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a, Rút gọn A
b, Biết xy = 16. Tìm các giá trị của x,y để A ccos giá trị nhỏ nhất. Tìm giá trị đó
Giúp em với ạ!
Cho biểu thức:\(\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}-\sqrt{y}}+\frac{3\sqrt{x}}{y-x}\)
a) Rút gọn
b) Tính A khi x=4, y=9
c) C/m : A<0 với x>y>0
Bài 1: Tìm điều kiện để các phân thức sau có nghĩa
a)\(\frac{x-1}{x+1}b)\frac{2x+1}{-3x+5}c)\frac{3x-1}{x^2-4}d)\frac{x-1}{x^2+4}e)\frac{x-1}{\left(x-2\right)\left(x+3\right)}g)\frac{x-1}{x+2}:\frac{x}{x+1}\)
Bài 2 :Tìm điều kiện để các căn thức sau có nghĩa:\(1)\sqrt{3x}|2)\sqrt{-x}|3)\sqrt{3x+2}|4)\sqrt{5-2x}|5)\sqrt{x^2}|6)\sqrt{-4x^2}|7)\sqrt{x-3}+\sqrt{2x+2}|8)\sqrt{\frac{-3}{x+2}}|9)\frac{3}{2x-4}\)
chứng minh rằng
\(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}}=\left|\frac{1}{x}+\frac{1}{y}-\frac{1}{x+y}\right|\).áp dụng tính M=\(\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)
x;y>0 x+y>=3 tìm gtnn \(A=x+y+\frac{1}{2x}+\frac{2}{y}\)
Cho x,y,z là các số dương và x+y+z \(\le\)1.Chứng minh:
Giải phương trình:
\(\frac{\sqrt{x-2013}-1}{x-2013}+\frac{\sqrt{y-2014}-1}{y-2014}+\frac{\sqrt{z-2015}-1}{z-2015}=\frac{3}{4}\)
Cho A= (\(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)) : (\(\frac{2\sqrt{x-2}}{\sqrt{x-3}}-1\))
a. Rút gọn A b. Tìm x để A < \(-\frac{1}{2}\) c. Tìm x để A đạt GTNN
Cho B= (\(\frac{\sqrt{x+1}}{\sqrt{x-1}}-\frac{\sqrt{x-1}}{\sqrt{x+1}}-\frac{8\sqrt{x}}{x-1}\)) : (\(\frac{\sqrt{x-x-3}}{x-1}-\frac{1}{\sqrt{x-1}}\))
a. Rút gọn B b. Tính A với x=6-2\(\sqrt{5}\) c. CMR: A <_1
Cho P= \(\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x-1}}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
a. Rút gọn P b. Tính giá trị của P khi x= 7-4\(\sqrt{3}\) c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó