Giai bpt :
\(\frac{x^2}{\left(1+\sqrt{1+x}\right)^2}>x-1\)
Giai BPT
\(\frac{\left(x-1\right)^3\left(x+2\right)^4}{x^2\left(x-7\right)^5}\ge0\)
bạn lập bảng xét dấu nhé
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
Tìm nghiệm của bpt
\(\frac{\left(\sqrt{x+1}-\sqrt{2x-1}\right)\left(\sqrt{x+1}-2\right)}{x-1}\le0\)
Giải BPT: \(\left(x-3\right)\left(x+1\right)+2\left(x-3\right)\sqrt{\frac{x+1}{x-3}}< 3\)
ĐKXĐ: \(\left[{}\begin{matrix}x>3\\x\le-1\end{matrix}\right.\)
- Với \(x>3\) BPT tương đương:
\(\left(x-3\right)\left(x+1\right)+2\sqrt{\left(x-3\right)\left(x+1\right)}-3< 0\)
\(\Leftrightarrow\left(\sqrt{\left(x-3\right)\left(x+1\right)}-1\right)\left(\sqrt{\left(x-3\right)\left(x+1\right)}+3\right)< 0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)< 1\)
\(\Leftrightarrow x^2-2x-4< 0\Rightarrow3< x< 1+\sqrt{5}\)
- Với \(x\le-1\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)-2\sqrt{\left(x-3\right)\left(x+1\right)}< 3\)
\(\Leftrightarrow\left(\sqrt{\left(x-3\right)\left(x+1\right)}+1\right)\left(\sqrt{\left(x-3\right)\left(x+1\right)}-3\right)< 0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)< 9\Leftrightarrow x^2-2x-12< 0\)
\(\Rightarrow1-\sqrt{13}< x\le-1\)
Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}3< x< 1+\sqrt{5}\\1-\sqrt{13}< x\le-1\end{matrix}\right.\)
Giải bpt:
a,\(\frac{\sqrt{x^2-x+4}-2x-3}{x-2}>3\)
b, \(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}\le\sqrt{x\left(4x+1\right)}\)
giải bpt :
\(\frac{\sqrt{2\left(x^2+7x+3\right)}-\sqrt{x^2+x-6}-3\sqrt{x+1}}{1-2\sqrt{x^2-x+1}}\ge0\)
ĐKXĐ: \(x\ge2\)
Khi đó ta có \(x^2-x+1\ge3\Rightarrow1-2\sqrt{x^2-x+1}< 0\)
Do đó BPT tương đương:
\(\sqrt{2\left(x^2+7x+3\right)}-\sqrt{x^2+x-6}-3\sqrt{x+1}\le0\)
\(\Leftrightarrow\sqrt{2x^2+14x+6}\le\sqrt{x^2+x-6}+3\sqrt{x+1}\)
\(\Leftrightarrow2x^2+14x+6\le x^2+10x+3+6\sqrt{\left(x+1\right)\left(x^2+x-6\right)}\)
\(\Leftrightarrow x^2+4x+3\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}\le6\sqrt{x-2}\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le36\left(x-2\right)\)
\(\Leftrightarrow x^2-32x+75\le0\)
\(\Rightarrow16-\sqrt{181}\le x\le16+\sqrt{181}\)
Giai các bpt sau
a,\(\left(x-1^{ }\right)^2+x^2\le\left(x+1\right)^2+\left(x+2^{ }\right)^2\)
b,\(\left(x^2+1\right)\left(x-6\right)\le\left(x-2\right)^3\)
\(a,\left(x-1\right)^2+x^2\le\left(x+1\right)^2+\left(x+2\right)^2\\ \Leftrightarrow x^2-2x+1+x^2\le x^2+2x+1+x^2+4x+4\\ \Leftrightarrow2x^2-2x+1\le2x^2+6x+5\\ \Leftrightarrow-8x-6\le0\\ \Leftrightarrow x\ge\dfrac{3}{4}\)
\(b,\left(x^2+1\right)\left(x-6\right)\le\left(x-2\right)^3\\ \Leftrightarrow x^3+x-6x^2-6\le x^3-6x^2+12x-8\\ \Leftrightarrow11x-2\ge0\\ \Leftrightarrow x\ge\dfrac{2}{11}\)
a: \(\Leftrightarrow x^2-2x+1+x^2< =x^2+2x+1+x^2+4x+4\)
=>-2x+1<=6x+5
=>-7x<=4
hay x>=-4/7
b: \(\Leftrightarrow x^3-6x^2+x-6-x^3+6x^2-12x+8< =0\)
=>-11x+2<=0
=>-11x<=-2
hay x>=2/11
bài 1giải bpt
a) \(\frac{x+2}{3}-x+1>x+3\)
b) \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\)
c) \(\frac{\left(x-2\right)\sqrt{x-1}}{\sqrt{x-1}}< 2\)
bài 2 \ giải hệ bpt
a) \(\left\{{}\begin{matrix}2-x>0\\2x+1>x-2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{2x-1}{3}< -x+1\\\frac{4-3x}{2}< 3-x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}-2x+\frac{3}{5}>\frac{3\left(2x-7\right)}{3}\\x-\frac{1}{2}< \frac{5\left(3x-1\right)}{2}\end{matrix}\right.\)
Mgọi người giúp mình với ạ
Giải BPT: \(\sqrt{x^4+x^2+1}+\sqrt{x.\left(x^2-x+1\right)}\le\sqrt{\dfrac{\left(x^2+1\right)^3}{x}}\)