Tìm nghiệm của bpt
\(\frac{\left(\sqrt{x+1}-\sqrt{2x-1}\right)\left(\sqrt{x+1}-2\right)}{x-1}\le0\)
Giải BPT: \(\left(x-3\right)\left(x+1\right)+2\left(x-3\right)\sqrt{\frac{x+1}{x-3}}< 3\)
Giải bpt:
a,\(\frac{\sqrt{x^2-x+4}-2x-3}{x-2}>3\)
b, \(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}\le\sqrt{x\left(4x+1\right)}\)
bài 1giải bpt
a) \(\frac{x+2}{3}-x+1>x+3\)
b) \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\)
c) \(\frac{\left(x-2\right)\sqrt{x-1}}{\sqrt{x-1}}< 2\)
bài 2 \ giải hệ bpt
a) \(\left\{{}\begin{matrix}2-x>0\\2x+1>x-2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{2x-1}{3}< -x+1\\\frac{4-3x}{2}< 3-x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}-2x+\frac{3}{5}>\frac{3\left(2x-7\right)}{3}\\x-\frac{1}{2}< \frac{5\left(3x-1\right)}{2}\end{matrix}\right.\)
Mgọi người giúp mình với ạ
Giải bpt
\(\frac{x^2}{\left(1+\sqrt{1+x}\right)^2}>x-4\)
giải bpt
1.\(\sqrt{5x+1}-\sqrt{4x-1}\le3\sqrt{x}\)
2.\(\frac{\sqrt{2\left(x^2-16\right)}}{\sqrt{x-3}}+\sqrt{x-3}>\frac{7-x}{\sqrt{x-}}\)
Giải bpt
\(\sqrt{\dfrac{x^4+x^2+1}{x\left(x^2+1\right)}}\ge\sqrt{\dfrac{x^2+x+1}{x^2+1}}+2-\dfrac{x^2+1}{x}\)
Giải bpt
\(\left(x-2\right)^2\ge\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)\)
giải BPT : a) \(\sqrt{11+x}+\sqrt{1-x}< 2-\frac{x^2}{4}\)
b) \(x+\frac{2x}{\sqrt{x^2-4}}>3\sqrt{5}\)
c) \(\left(x+2\right)\sqrt{4-x^2}=< -2x-8\)