Tìm GTNN
B=ǀx - 2ǀ+ǀx -4ǀ
Tìm GTNN của
A=-1/2+ǀ3x-5ǀ
B=ǀx - 2ǀ+ǀx -4ǀ
a) Ta có: \(\left|3x-5\right|\ge0\forall x\)
nên \(\left|3x-5\right|-\dfrac{1}{2}\ge-\dfrac{1}{2}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{3}\)
Tìm x, y \(\in\)\(ℤ\)biết :
a, ǀx - 3ǀ + 3 – x = 0
b, ǀx + 1ǀ + ǀx + 2ǀ = 1
c, ǀx - 5ǀ + x – 8 = 6
Cho x,y thuộc Z.
a, Tìm x để A = 100 - ǀx + 5ǀ có GTNN. Tìm GTNN đó.
b,Tìm y để B = ǀy - 3ǀ + 50 có GTNN.Tìm GTNN đó.
c,Tìm x,y để C = ǀx - 100ǀ +y + 200 - 1 có GTNN. Tìm GTNN đó.\
Nhanh nhanh giùm mik.
Tìm GTNN
B= -14+2X^2+X
B=2(x^2+2.x.1/4 +1/16)^2 -57/8
=2.(x+1/4)^2 -57/8
MinB=-57/8 khi x=-1/4
\(B=-14+2x^2+x=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{113}{8}=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{113}{8}\ge-\dfrac{113}{8}\)\(ĐTXR\Leftrightarrow x=-\dfrac{1}{4}\)
\(B=2x^2+x-14\)
\(=2\left(x^2+\dfrac{1}{2}x-7\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{113}{16}\right)\)
\(=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{113}{8}\ge-\dfrac{113}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{4}\)
Tìm GTNN
B= 15/(4x-4x^2-5)
Ta có : \(-4x^2+4x-5=-\left(4x^2-4x+5\right)=-\left(2x-1\right)^2-4\le-4\)
\(\Rightarrow B\ge\dfrac{15}{-4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTNN B là -15/4 khi x = 1/2
tìm GTNN
B=x^2+y^2-2x+4y+2010
`B=x^2 +y^2 -2x+4y+2010`
`=x^2 -2x+1+y^2 +4y+4+2005`
`=(x-1)^2 + (y+2)^2 +2005 >= 2005`
Dấu "=" xảy ra `<=>{(x-1=0),(y+2=0):}<=>{(x=1),(y=-2):}`
Vậy `B_(min) = 2005 <=> {(x=1),(y=-2):}`
`B=x^2+y^2-2x+4y+2010`
`B=x^2-2x+y^2+4y+2010`
`B= x^2-2.x.1+1^2-1^2 +y^2+2y.2+2^2-2^2+2010`
`B= (x^2-2x+1)+(y^2+4y+4)-1-4+2010`
`B= (x-1)^2 +(y+2)^2 +2005≥2005`
nên `B` đạt GTNN là `B=2005`
khi đó \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\) `<=>`\(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Tìm GTNN
B= (4x^2 - 6x +1)/(4x^2-4x+1)
Đề bài ko chính xác
Biểu thức này chỉ có GTLN, không có GTNN
cho a,b>0 thỏa a+b=3 tìm GTNN
B=\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\left(\frac{1}{a}+\frac{1}{b}\right)(a+b)\geq (1+1)^2$
$\Leftrightarrow B.3\geq 4$
$\Leftrightarrow B\geq \frac{4}{3}$
Vậy $B_{\min}=\frac{4}{3}$
Giá trị này đạt tại $a=b=\frac{3}{2}$
tìm m để pt \(x^2-2\left(m+1\right)x+5m+1=0\)
có nghiệm x1;x2 sao cho
a,S=x1^2+x2^2-x1x2 đạt gtnn
b, 1<x1<x2
\(\Delta'=\left(m+1\right)^2-\left(5m+1\right)=m^2-3m\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=5m+1\end{matrix}\right.\)
a.
\(S=\left(x_1+x_2\right)^2-3x_1x_2=4\left(m+1\right)^2-3\left(5m+1\right)\)
\(=4m^2-7m+1=\dfrac{7}{3}\left(m^2-3m\right)+\dfrac{5}{3}m^2+1\ge1\)
\(S_{min}=1\) khi \(\dfrac{7}{3}\left(m^2-3m\right)+\dfrac{5}{3}m^2=0\Rightarrow m=0\)
b.
\(1< x_1< x_2\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)>0\\\dfrac{x_1+x_2}{2}>1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1>0\\x_1+x_2>2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5m+1-2\left(m+1\right)+1>0\\2\left(m+1\right)>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>0\\m>-1\end{matrix}\right.\) \(\Rightarrow m>0\)
Kết hợp điều kiện delta \(\Rightarrow m\ge3\)
\(a,\Leftrightarrow\Delta\ge0\Leftrightarrow\left(2m+2\right)^2-4\left(5m+1\right)\ge0\Leftrightarrow4m^2-12m\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\le0\\m\ge3\end{matrix}\right.\)
\(vi-ét\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1x2=5m+1\end{matrix}\right.\)
\(\Rightarrow S=x1^2+x2^2-x1x2=\left(x1+x2\right)^2-3x1x2\)
\(=\left(2m+2\right)^2-3\left(5m+1\right)=4m^2-7m+1\)
\(=\left(2m\right)^2-2.2.\dfrac{7}{4}.m+\left(\dfrac{7}{4}\right)^2-\dfrac{33}{16}=\left(2m-\dfrac{7}{4}\right)^2-\dfrac{33}{16}\left(1\right)\)
\(TH1:m\ge3\Rightarrow\left(1\right)\ge\left(2.3-\dfrac{7}{4}\right)^2-\dfrac{33}{16}=16\)
\(TH2:m\le0\Rightarrow\left(1\right)\ge\left(0-\dfrac{7}{4}\right)^2-\dfrac{33}{16}=1\)
\(\Rightarrow MinS=1\Leftrightarrow m=0\left(tm\right)\)
\(b,1< x1< x2\Leftrightarrow0< x1-1< x2-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-1\right)\left(x2-1\right)>0\\x1+x2-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}x1>1\\x2>1\end{matrix}\right.\\\left\{{}\begin{matrix}x1 < 1\\x2< 1\end{matrix}\right.\end{matrix}\right.\\2m+2-2>0\\\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}x1x2>1\\x1x2< 1\end{matrix}\right.\\m>0\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}m>0\\m< 0\end{matrix}\right.\\m>0\\\end{matrix}\right.\Rightarrow m>3\)