Phân tích thành nhân tử: 4\(\pm\)2\(\sqrt{3}\)
Phân tích đa thức \(10x-25x^2\sqrt{2}+4\sqrt{2}\) thành nhân tử.
\(-25x^2\sqrt{2}+10x+4\sqrt{2}=-\sqrt{2}\left(25x^2-\dfrac{10}{\sqrt{2}}-4\right)=-\sqrt{2}.\left(\left(25x\right)^2-2.5.\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\dfrac{5}{2}\right)=-\sqrt{2}\left[\left(5x-\dfrac{1}{\sqrt{2}}\right)^2-\dfrac{5}{2}\right]=-\sqrt{2}.\left(5x-\dfrac{1}{\sqrt{2}}-\dfrac{\sqrt{5}}{\sqrt{2}}\right).\left(5x-\dfrac{1}{\sqrt{2}}+\dfrac{\sqrt{5}}{\sqrt{2}}\right)=-\sqrt{2}.\left(5x-\dfrac{1+\sqrt{5}}{\sqrt{2}}\right)\left(5x-\dfrac{1-\sqrt{5}}{\sqrt{2}}\right)\)
Phân tích đa thức thành nhân tử
x^3+9x^2+27x+27
3\(\sqrt{3x^3}\)+18x^2+12\(\sqrt{3x}\)+8
\(\dfrac{1}{4}\)-x^2
a) \(x^3+9x^2+27x+27=\left(x+3\right)^3\)
b) \(3\sqrt{3x^3}+18x^2+12\sqrt{3x}+8=\left(\sqrt{3x}+2\right)^3\)
c) \(\dfrac{1}{4}-x^2=\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)
Phân tích thành nhân tử: \(x+3\sqrt{x+2}-2\)
\(x+3\sqrt{x+2}-2\)
\(=x+2+3\sqrt{x+2}-4\)
\(=\left(\sqrt{x+2}\right)^2+4\sqrt{x+2}-\sqrt{x+2}-4\)
\(=\left(\sqrt{x+2}+4\right)\left(\sqrt{x+2}-1\right)\)
\(x+3\sqrt{x+2}-2=x+2+3\sqrt{x+2}-4\)
\(=x+2-\sqrt{x+2}+4\sqrt{x+2}-4\)
\(=\sqrt{x+2}\left(\sqrt{x+2}-1\right)+4\left(\sqrt{x+2}-1\right)\)
\(=\left(\sqrt{x+2}-1\right)\left(\sqrt{x+2}+4\right)\)
\(x+2\sqrt{x}-3\)
phân tích thành nhân tử. Help me!!!!
\(x+2\sqrt{x}-3=x+2\sqrt{x}+1-4=\left(\sqrt{x}+1\right)-2^2=\left(\sqrt{x}+1+2\right)\left(\sqrt{x}+1-2\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)
Phân tích đa thức thành nhân tử ( với x > hoặc bằng 0 )
2+\(\sqrt{3}+\sqrt{6}+\sqrt{8}\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=2+\sqrt{3}+\sqrt{6}+2\sqrt{2}\)
\(=2+\sqrt{3}+\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)\left(\sqrt{2}+1\right)\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)\)
Phân tích đa thức thành nhân tử
\(\dfrac{x^2}{4}\)-xy+y^2
x^2+x+\(\dfrac{1}{\text{4}}\)
x^2+2\(\sqrt{3}\)x+3
4x^2-1
a, \(\dfrac{x^2}{4}-xy+y^2=\left(\dfrac{x}{2}\right)^2-xy+y^2=\left(\dfrac{x}{2}\right)^2-2.\dfrac{x}{2}.y+y^2\)
\(=\left(\dfrac{x^2}{2}-y\right)^2\)
b, \(x^2+x+\dfrac{1}{4}=x^2+\dfrac{1}{2}.2.x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
c, \(x^2+2\sqrt{3}x+3=x^2+2\sqrt{3}x+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d, \(4x^2-1=\left(2x-1\right)\left(2x+1\right)\)
`x^2/4-2*x/2*y+y^2`
`=(x/2-y)^2`
`x^2+x+1/4`
`=x^2+2*x*1/2+(1/2)^2`
`=(x+1/2)^2`
`x^2+2sqrt3x+3`
`=x+2xsqrt3+sqrt3^2`
`=(x+sqrt3)^2`
`4x^2-1`
`=(2x)^2-1`
`=(2x-1)(2x+1)`
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Phân tích đa thức thành nhân tử
\(4+2\sqrt{3}\)
\(4+2\sqrt{3}\)
\(=\left(\sqrt{3}\right)^2+2\sqrt{3}+1\)
\(=\left(\sqrt{3}+1\right)^2\)
phân tích đa thức thành nhân tử
\(x+2\sqrt{x-1}\) (với x≥1)
\(x-4\sqrt{x-2}+2\) ( với x ≥2)
\(x+2\sqrt{x-1}=\left(x-1\right)+2\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(x-2\right)-4\sqrt{x-2}+4=\left(\sqrt{x-2}-2\right)^2\)
\(x+2\sqrt{x-1}=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(\sqrt{x-2}+4\right)^2\)