giải phương trình:
\(\dfrac{720}{x+10}+4=\dfrac{720}{x-10}\)
(x+10)(\(\dfrac{720}{x}-6\))=720
giải pt
ĐK: ` x \ne 0`
`(x+10)(720/x-6)=720`
`<=>(720(x+10))/x-6(x+10)=720`
`<=>(720x+7200)/x-6x-60=720`
`<=>7200/x-6x=60`
`<=>7200-6x^2=60x`
`<=>` \(\left[{}\begin{matrix}x=30\\x=-40\end{matrix}\right.\)
Vậy `S={30;-40}`.
\((x+10)(\dfrac{720}{x}-6)=720\) (ĐK: x≠0)
⇔\(720x-6x^2+7200-60x=720x\)
⇔\((x-30)(x+40)=0\)
⇔\(\left[\begin{array}{} x-30=0\\ x+40=0 \end{array} \right.\)⇔\(\left[\begin{array}{} x=30\\ x=40 \end{array} \right.\)
Vậy S={30;−40}S={30;-40}.
Giải các phương trình sau: \(\dfrac{x^2}{3}+\dfrac{48}{x^2}-10.\left(\dfrac{x}{3}-\dfrac{4}{x}\right)=0\)
ĐKXĐ: \(x\neq 0\).
Đặt \(\dfrac{x}{3}-\dfrac{4}{x}=t\).
PT đã cho tương đương:
\(3t^2+8-10t=0\)
\(\Leftrightarrow\left(t-2\right)\left(3t-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=\dfrac{4}{3}\end{matrix}\right.\).
Với t = 2 ta có \(\dfrac{x}{3}-\dfrac{4}{x}=2\Leftrightarrow\dfrac{x^2-12}{3x}=2\Leftrightarrow x^2-6x-12=0\Leftrightarrow x=\pm\sqrt{21}+3\).
Với t = \(\frac{4}{3}\) ta có \(\dfrac{x}{3}-\dfrac{4}{x}=\dfrac{4}{3}\Leftrightarrow\dfrac{x^2-12}{3x}=\dfrac{4}{3}\Leftrightarrow x^2-12=4x\Leftrightarrow x^2-4x-12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\).
Vậy...
giải phương trình,giúp với ạ
\(\dfrac{x+1}{4}-\dfrac{5+2x}{8}=\dfrac{3-4x}{2}\)
\(\dfrac{4-3x}{5}-\dfrac{4-x}{10}=\dfrac{x+2}{2}\)
a) \(\dfrac{x+1}{4}-\dfrac{5+2x}{8}=\dfrac{3-4x}{2}\)
⇔\(\dfrac{2\left(x+1\right)}{8}-\dfrac{5+2x}{8}=\dfrac{4\left(3-4x\right)}{8}\)
⇔ 2x + 2 - 5 - 2x = 12 -16x
⇔ 16x = 15
⇔ x = 15/16
b) \(\dfrac{4-3x}{5}-\dfrac{4-x}{10}=\dfrac{x+2}{2}\)
⇔\(\dfrac{2\left(4-3x\right)}{10}-\dfrac{4-x}{10}=\dfrac{5\left(x+2\right)}{10}\)
⇔ 8 - 6x - 4 + x = 5x + 10
⇔ 10x = -6
⇔ x = -6/10
Câu 1:
x + 1/4 - 5 + 2x/8 = 3 - 4x/2
<=> 2x + 2/8 - 5 + 2x/8 = 12 - 16x/8
<=> 2x + 2 - 5 - 2x = 12 - 16x
<=> -3 = 12 - 16x <=> 15 = 16x <=> x = 15/16
Câu 2:
4 - 3x/5 - 4 - x/10 = x + 2/2
<=> 8 - 6x/10 - 4 - x/10 = 5x + 10/10
<=> 8 - 6x - 4 + x = 5x + 10
<=> 4 - 5x = 5x + 10
<=> 4 = 10x + 10 <=> 10x = -6 <=> x = -3/5
giải phương trình:
\(\dfrac{60}{x-10}-\dfrac{60}{x}=\dfrac{3}{10}\)
\(\Leftrightarrow3x\left(x-10\right)=60x-60\left(x-10\right)\)
\(\Leftrightarrow3x\left(x-10\right)=600\)
\(\Leftrightarrow x^2-10x-200=0\)
=>(x-20)(x+10)=0
=>x=20 hoặc x=-10
\(\dfrac{60}{x-10}-\dfrac{60}{x}=\dfrac{3}{10}\)đk : x khác 10 ; 0
\(\Leftrightarrow600x-600\left(x-10\right)=3x\left(x-10\right)\)
\(\Leftrightarrow3x^2-30x-6000=0\Leftrightarrow x=50;x=-40\left(tm\right)\)
giải phương trình ; \(\dfrac{x-130}{20}\)+\(\dfrac{x-100}{25}\)+\(\dfrac{x-60}{30}\)+\(\dfrac{x-10}{35}\)=10
\(\dfrac{x-130}{20}\)+\(\dfrac{x-100}{25}\)+\(\dfrac{x-60}{30}\)+\(\dfrac{x-10}{35}\)=10
⇔\(\dfrac{2625\left(x-130\right)}{52500}\)+\(\dfrac{2100\left(x-100\right)}{52500}\)+\(\dfrac{1750\left(x-60\right)}{52500}\)+\(\dfrac{1500\left(x-10\right)}{52500}\)=\(\dfrac{525000}{52500}\)
⇔2625\(x\)-341250+2100\(x\)-210000+1750\(x\)-105000+1500\(x\)-15000=525000
⇔ 7975\(x\) = 1196250
⇔ \(x\) = \(\dfrac{1196250}{7975}\)
⇔\(x \) = 150
Giải phương trình sau:\(\dfrac{1}{x^2+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+10+48}=\dfrac{4}{105}\)
(Giải thích các bước giải)
\(\dfrac{1}{x^2+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)
\(\Leftrightarrow\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)
\(\Leftrightarrow\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)+\left(\dfrac{1}{x+2}-\dfrac{1}{x+4}\right)+\left(\dfrac{1}{x+4}-\dfrac{1}{x+6}\right)+\left(\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)=\dfrac{8}{105}\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)
\(\Leftrightarrow\dfrac{8}{x\left(x+8\right)}=\dfrac{8}{105}\)
\(\Leftrightarrow x\left(x+8\right)=105\)
\(\Leftrightarrow x^2+8x-105=0\)
\(\Leftrightarrow x^2-7x+15x-105=0\)
\(\Leftrightarrow x\left(x-7\right)+15\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)
Thử lại ta có nghiệm của phương trình trên là \(x=7\text{v}à\text{x}=15\)
giải phương trình
\(\dfrac{x}{30}=\dfrac{x-10}{10}\)
giải hộ mình với ạ
x.10=(x-10).30
=>10x=30x-300
=>10x-30x+300=0
=>-20x-300=0
=>x=15
\(\Leftrightarrow\dfrac{x}{30}-\dfrac{x-10}{10}=0\)
\(\Leftrightarrow\dfrac{x-3\left(x-10\right)}{30}=0\)
\(\Leftrightarrow x-3x+30=0\)
\(\Leftrightarrow-2x+30=0\)
\(\Leftrightarrow-2x=-30\)
\(\Leftrightarrow x=15\)
\(=>x.10=30x-300\)
\(=>10x-30x-300=0\)
\(=>-20x=300\)
\(=>x=-15\)
Giải hệ pt :
\(\dfrac{A\dfrac{x}{y}}{P_{x+1}}+C\dfrac{y-x}{y}=126\\ P_{x+1}=720\)
Giải các phương trình sau:
a) \(\dfrac{1}{2x-6}+\dfrac{3x-10}{x^2-4x+3}=\dfrac{7}{2}\)
b) \(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(a.ĐK:x\ne3;1\)
\(\Rightarrow\dfrac{1}{2\left(x-3\right)}+\dfrac{3x-10}{\left(x-1\right)\left(x-3\right)}=\dfrac{7}{2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)+2\left(3x-10\right)}{2\left(x-1\right)\left(x-3\right)}=\dfrac{7\left(x-1\right)\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow x-1+2\left(3x-10\right)=7\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow x-1+6x-20=7\left(x^2-4x+3\right)\)
\(\Leftrightarrow7x-21=7x^2-28x+21\)
\(\Leftrightarrow7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)
b.\(ĐK:x\ne2;4\)
\(\Rightarrow\dfrac{x-1}{x-2}-\dfrac{x+3}{4-x}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(4-x\right)}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)=2\)
\(\Leftrightarrow4x-x^2-4+x-x^2+2x-3x+6-2=0\)
\(\Leftrightarrow-2x^2+4x=0\)
\(\Leftrightarrow-2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)
a: \(\Leftrightarrow\dfrac{1}{2\left(x-3\right)}+\dfrac{3x-10}{\left(x-1\right)\left(x-3\right)}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1+2\left(3x-10\right)=7\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow7\left(x^2-4x+3\right)=x-1+6x-20=7x-21\)
\(\Leftrightarrow\left(x-3\right)\left(7x-7\right)-7\left(x-3\right)=0\)
=>(x-3)(7x-14)=0
=>x=3(loại) hoặc x=2(nhận)
b: \(\Leftrightarrow\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)=-2\)
\(\Leftrightarrow x^2-5x+4+x^2+x-6=-2\)
\(\Leftrightarrow2x^2-4x=0\)
=>2x(x-2)=0
=>x=0(nhận) hoặc x=2(loại)