ĐKXĐ: \(x\neq 0\).
Đặt \(\dfrac{x}{3}-\dfrac{4}{x}=t\).
PT đã cho tương đương:
\(3t^2+8-10t=0\)
\(\Leftrightarrow\left(t-2\right)\left(3t-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=\dfrac{4}{3}\end{matrix}\right.\).
Với t = 2 ta có \(\dfrac{x}{3}-\dfrac{4}{x}=2\Leftrightarrow\dfrac{x^2-12}{3x}=2\Leftrightarrow x^2-6x-12=0\Leftrightarrow x=\pm\sqrt{21}+3\).
Với t = \(\frac{4}{3}\) ta có \(\dfrac{x}{3}-\dfrac{4}{x}=\dfrac{4}{3}\Leftrightarrow\dfrac{x^2-12}{3x}=\dfrac{4}{3}\Leftrightarrow x^2-12=4x\Leftrightarrow x^2-4x-12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\).
Vậy...