Giải các phương trình sau:
a) \(x^2+\dfrac{2x}{x-1}=8\)
b) \(\dfrac{x^2+2x+1}{x^2+2x+2}+\dfrac{x^2+2x+2}{x^2+2x+3}=\dfrac{7}{6}\)
c) \(\dfrac{x+4}{x-1}+\dfrac{x-4}{x+1}=\dfrac{x+8}{x-2}+\dfrac{x-8}{x+2}+6\)
d) \(\left(x^2+6x+8\right)\left(x^2+8x+15\right)=24\)
e) \(\left(x^2+x-2\right)\left(x^2+9x+18\right)=28\)
f) \(3\left(-x^2+2x+3\right)^4-26x^2\left(-x^2+2x+3\right)^2-9x^4=0\)
g) \(x^4+6x^3+11x^2+6x+1=0\)
h) \(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2=0\)
i) \(\left(x+2\right)^4+\left(x+8\right)^4=272\)
giải hết đống này chắc @@ quá,để tối đi,giờ t đi làm mấy bài ngắn ngắn
a) x2+\(\dfrac{2x}{x-1}\)=8(ĐKXĐ : x ≠ 1
⇔ x2(x-1)+2x =8⇔ x3 - x2 +2x - 8=0
⇔x3 - 23 -x2+2x =0⇔ (x-2)(x2 +x+1) -x(x-2)
⇔(x-2)(x2 +1)⇒x =2
x2 +1 =0⇒x2 -1⇒x ∈∅(loại)
vậy x =2
Giải phương trình :
a) \(x^2+\dfrac{2x}{x-1}=8\)
ĐKXĐ : \(x-1\ne0\Rightarrow x\ne1\)
Ta có : \(x^2+\dfrac{2x}{x-1}=8\)
\(\Leftrightarrow\) \(\dfrac{x^2\left(x-1\right)}{x-1}+\dfrac{2x}{x-1}=\dfrac{8\left(x-1\right)}{x-1}\)
\(\Rightarrow x^2\left(x-1\right)+2x=8\left(x-1\right)\)
\(\Leftrightarrow x^3-x^2+2x=8x-8\)
\(\Leftrightarrow x^3-x^2+2x-8x=-8\)
\(\Leftrightarrow x^3-x^2-6x+8=0\)
\(\Leftrightarrow\left(x^3-x^2\right)-\left(6x-8\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-2\left(3x-4\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x-1\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x-1=0\\3x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=1\\x=\dfrac{4}{3}\end{matrix}\right.\)
Đối chiếu với ĐKXĐ ta được \(x\in\left\{\sqrt{2};\dfrac{4}{3}\right\}\) thỏa mãn.