\(a,6x^2-5x+3=2x-3x\left(3-2x\right)\)
\(\Leftrightarrow6x^2-5x+3=2x-9x+6x^2\)
\(\Leftrightarrow6x^2-5x+3=-7x+6x^2\)
\(\Leftrightarrow6x^2-5x+3+7x-6x^2=0\)
\(\Leftrightarrow2x+3=0\Leftrightarrow x=\dfrac{-3}{2}\)
Vậy ....
b,\(\dfrac{2\left(x+4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
\(\Leftrightarrow\dfrac{10\left(x-4\right)-2\left(3+2x\right)}{20}=\dfrac{20x+4\left(1-x\right)}{20}\)
\(\Leftrightarrow10x-40-6-4x=20x+4\left(1-x\right)\)
\(\Leftrightarrow6x-46=16x+4\)
\(\Leftrightarrow6x-16x=4+46\)
\(\Leftrightarrow-10x=50\Leftrightarrow x=-5\)
Vậy...
c,\(\dfrac{2x}{3}+\dfrac{3x-5}{4}=\dfrac{3\left(2x-1\right)}{2}-\dfrac{7}{6}\)
\(\Leftrightarrow\dfrac{8x+3\left(3x-5\right)}{12}=\dfrac{6\left(6x-3\right)-14}{12}\)
\(\Leftrightarrow\dfrac{8x+9x-15}{12}=\dfrac{36x-18-14}{12}\)
\(\Leftrightarrow17x-15=36x-32\)
\(\Leftrightarrow17x-36x=-32-15\)
\(\Leftrightarrow19x=-47\Leftrightarrow x=\dfrac{-47}{19}\)
Vậy...