\(\dfrac{2}{3.5}+\)\(\dfrac{2}{5.7}+\dfrac{2}{7.9}\)\(+...+\dfrac{2}{2015.2017}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}\dfrac{2}{7.9}+.........+\dfrac{2}{99.101}\)
\(P=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)
Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{1}{15}\)
\(=\dfrac{4}{15}\)
Câu 1:
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)
= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
= \(\dfrac{1}{3}-\dfrac{1}{101}\)
= \(\dfrac{98}{303}\)
Câu 2 làm tương tự ở câu 1 nhé
\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + \(\dfrac{2}{7.9}\) + ... + \(\dfrac{2}{2020.2022}\)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2020.2022}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}\)
\(=\dfrac{2021}{2022}\)
\(1-\dfrac{2}{3.5}-\dfrac{2}{5.7}-\dfrac{2}{7.9}-...-\dfrac{2}{61.63}-\dfrac{2}{61.63}\)
\(1-\dfrac{2}{3.5}-\dfrac{2}{5.7}-...-\dfrac{2}{61.63}-\dfrac{2}{63.65}\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{63}-\dfrac{1}{65}\right)\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{65}\right)\)
\(=1-\dfrac{62}{195}\)
\(=\dfrac{133}{195}\)
=1-(1/3-1/5+1/5-1/7+...+1/61-1/63)
=1-20/63=43/63
Tính hợp lý: \(B=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.100}\)
\(B=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.100}\)
\(B=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99.100}+\dfrac{1}{99.100}\)
\(B=\dfrac{1}{3}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(B=\dfrac{1}{3}-\dfrac{2}{100}+\dfrac{1}{99}\)
\(B=\dfrac{1}{3}-\dfrac{1}{50}+\dfrac{1}{99}\)
Đến đây thì hết tính hợp lý được rồi:v
\(B=\dfrac{34}{99}-\dfrac{1}{50}\)
\(B=\dfrac{1601}{4950}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}+\dfrac{2}{99.101}\)
giúp mình với ạ, giải từng bước nhé ạ
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=2\cdot\dfrac{98}{303}=\dfrac{196}{303}\)
= 2/3 . 2/5 + 2/5 . 2/7 + ... + 2/99 . 2/101
= 2/3 - 2/5 + 2/5 - 2/7 + ... + 2/99 - 2/101
= 2/3 - 2/101
= 196/303
2/3 - 2/5 + 2/5 - 2/7 + 2/7 - 2/9 + .... + 2/97 - 2/99 + 2/99 - 2/101
= 2/3 - 2/101
= 196/303
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{39}\)
tính
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{39}\)
\(=(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13})+\dfrac{2}{39}\)
\(=(\dfrac{1}{3}-\dfrac{1}{13})+\dfrac{2}{39}\)
\(=\dfrac{10}{39}+\dfrac{2}{39}\)
\(=\dfrac{4}{13}\)
gọi biểu thức đó là A
A=\(1.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)+\dfrac{2}{39}\)
A= \(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)+\dfrac{2}{39}=\dfrac{4}{13}\)
mk nhanh nhất nha bạn
Tính nhanh :
\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....+\dfrac{2}{97.99}\)
\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
\(M=2.(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99})\)
\(M=2.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
\(M=2.\dfrac{32}{99}\)
\(M=\dfrac{64}{99}\)
http://vietjack.com/giai-sach-bai-tap-toan-6/bai-95-trang-28-sach-bai-tap-toan-6-tap-2.jsp
\(m=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)
đề : tính
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+.....+\dfrac{1}{13}-\dfrac{1}{15}\)
(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)
\(=\dfrac{1}{3}-\dfrac{1}{15}=\dfrac{4}{15}\)
Chúc bạn học tốt!!!
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)
= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\)
= \(\dfrac{1}{3}-\dfrac{1}{15}\)
= \(\dfrac{4}{15}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\)\(=\dfrac{1}{3}-\dfrac{1}{15}\)
\(=\dfrac{4}{15}\)
Tính tổng
S=\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{23.25}\)
\(S=\dfrac{5-3}{5.3}+\dfrac{7-5}{7.5}....+\dfrac{25-23}{23.25}\)
\(S=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{23}-\dfrac{1}{25}\)
\(S=\dfrac{1}{3}-\dfrac{1}{25}=\dfrac{25-3}{3.25}=\dfrac{7}{25}\)
sửa lại nha bạn
\(\dfrac{25-3}{25.3}=\dfrac{22}{75}\)
\(S=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{23.25}\)
\(S=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{23}-\dfrac{2}{25}\)
\(S=\dfrac{1}{3}-\dfrac{1}{25}\)
\(S=\dfrac{25}{75}-\dfrac{3}{75}\)
\(S=\dfrac{22}{75}\)