Giải phương trình:
a)\(x^4-2x^3+3x^2-4x+3=0\)
b)\(2x^4-5x^3-27x^2+25x+50=0\)
Giải phương trình:
a) \(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\)
b \(2x^4-5x^3+6x^2-5x+2=0\)
\(a,\left(đk:x\ge0\right)\)
\(x=0\Rightarrow\sqrt{0+3}+0=0\left(vô-nghiệm\right)\)
\(x>0\)
\(\)\(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}+\dfrac{4\sqrt{x}}{\sqrt{x+3}}=4\)
\(VT\ge2\sqrt{\dfrac{\sqrt{x+3}}{\sqrt{x}}.\dfrac{4\sqrt{x}}{\sqrt{x+3}}}=4\)
\(dấu"="xảy-ra\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}=\dfrac{4\sqrt{x}}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Leftrightarrow x=1\left(tm\right)\)
\(b.2x^4-5x^3+6x^2-5x+2=0\Leftrightarrow\left(x-1\right)^2\left(2x^2-2x+2\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2-2x+2=0\left(vô-nghiệm\right)\end{matrix}\right.\)
a) ĐKXĐ : \(x\ge0\)
PT <=> \(x+3-4\sqrt{x}\sqrt{x+3}+4x=0\)
<=> \(\left(\sqrt{x+3}-2\sqrt{x}\right)^2=0\)
<=> \(\sqrt{x+3}=2\sqrt{x}\)
<=> \(x+3=4x\)
<=> x = 1
Vậy x = 1 là nghiệm phương trình
Giải phương trình : 2x4 - 5x3- 27x2 +25x +50 =0
Ta có : \(2x^4-5x^3-27x^2+25x+50=0\)
\(\Leftrightarrow2x^4+2x^3-10x^2-7x^3-7x^2+35x-10x^2-10x+50=0\)
\(\Leftrightarrow2x^2\left(x^2+x-5\right)-7x\left(x^2+x-5\right)-10\left(x^2+x-5\right)=0\)
\(\Leftrightarrow\left(x^2+x-5\right)\left(2x^2-7x-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x-5=0\\2x^2-7x-10=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1\pm\sqrt{21}}{2}\\x=\frac{7\pm\sqrt{129}}{4}\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{-1-\sqrt{21}}{2};\frac{7-\sqrt{129}}{4};\frac{-1+\sqrt{21}}{2};\frac{7+\sqrt{129}}{4}\right\}\)
giải phương trình:
\(2x^4-5x^3-27x^2+25x+50=0\)
\(2x^4-5x^3-27x^2+25x+50=0\)
\(\Leftrightarrow2x^4-4x^3-x^3+2x^2-25x^2+50x+25x^2-25x+50=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-x^2\left(x-2\right)-25x\left(x-5\right)+25\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-x^2-25x+25\right)=0\)
:D sorry mk ko bt phân tích 2x^3-x^2-25x+25 :D
\(2x^4-5x^3-27x^2+25x+50=0\)
\(\Leftrightarrow2x^4-7x^3-10x^2+2x^3-7x^2-10x-10x^2+35x+50=0\)
\(\Leftrightarrow x^2\left(2x^2-7x-10\right)+x\left(2x^2-7x-10\right)-5\left(2x^2-7x-10\right)=0\)
\(\Leftrightarrow\left(x^2+x-5\right)\left(2x^2-7x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-5=0\\2x^2-7x-10=0\end{matrix}\right.\)
Dễ dàng chứng minh được 2 đa thức trên đều vô nghiệm
Kết luận: \(S=\left\{\varnothing\right\}\)
Bài này ko dễ đâu:\(2x^4-5x^3-27x^2+25x+50=0\) (1)
Ta kiểm tra, hiển nhiên \(x=0\) ko phải là nghiệm của phương trình
Ta có: Phương trình (1) tương đương:
\(2x^2\left(x^2-\dfrac{5}{2}x-\dfrac{27}{2}+\dfrac{25}{2x}+\dfrac{25}{x^2}\right)=0\) (2)
Ta đặt \(x-\dfrac{5}{x}=y\) thì \(x^2+\dfrac{25}{x^2}=y^2+10\) thế vào phương trình:
(2) \(\Leftrightarrow2x^2[\left(x^2+\dfrac{25}{x^2}\right)-\dfrac{5}{2}\left(x-\dfrac{5}{x}\right)-\dfrac{27}{2}]=0\)
\(\Leftrightarrow2x^2[\left(y^2+10\right)-\dfrac{5}{2}y-\dfrac{27}{2}]=0\)
\(\Leftrightarrow y^2-\dfrac{5}{2}y-\dfrac{7}{2}=0\Leftrightarrow\left[{}\begin{matrix}y=3,5\\y=-1\end{matrix}\right.\)
Trường hợp \(y=3,5\Leftrightarrow x-\dfrac{5}{x}=3,5\Leftrightarrow x^2-3,5x-5=0\)
\(\Delta=b^2-4ac=32,25>0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3.5+\sqrt{32,25}}{2}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3,5-\sqrt{32,25}}{2}\end{matrix}\right.\)
Trường hợp \(y=-1\Leftrightarrow x-\dfrac{5}{x}=-1\)\(\Leftrightarrow x^2+x-5=0\)
\(\Delta=b^2-4ac=21>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_3=\dfrac{-b+\sqrt{\Delta}}{2}=\dfrac{3.5+\sqrt{21}}{2}\\x_4=\dfrac{-b-\sqrt{\Delta}}{2}=\dfrac{3.5-\sqrt{21}}{2}\end{matrix}\right.\)
Sao toàn ra nghiệm vô tỉ thế này? ko bt đúng ko đây? Các bn tự kiểm tra và sửa lỗi cho mk vs nhé!
Giải phương trình:
a)\(2x^3+4x^2+10x=0\)
b)\(\dfrac{x^2-4x}{x^2-5x+4}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\)
a: \(\Leftrightarrow2x\left(x^2+2x+5\right)=0\)
=>x=0
b: \(\Leftrightarrow\dfrac{x}{x-1}-\dfrac{x+1}{x-3}=\dfrac{1}{2}\)
\(\Leftrightarrow x^2-4x+3=2x\left(x-3\right)-2\left(x^2-1\right)\)
\(\Leftrightarrow x^2-4x+3=2x^2-6x-2x^2+2=-6x+2\)
\(\Leftrightarrow x^2+2x+1=0\)
=>x=-1(nhận)
\(\Leftrightarrow2x\left(x^2+2x+5\right)=0\)
\(\Leftrightarrow x=0\) ( vì \(x^2+2x+5>0;\forall x\)
b.\(\Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\)
\(ĐK:x\ne1;3;4\)
\(\Leftrightarrow\dfrac{x}{\left(x-1\right)}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\)
\(\Leftrightarrow\dfrac{x\left(x-3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-1\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow x^2-3x-\left(x^2-3x-x+3\right)=x^2-1\)
\(\Leftrightarrow x^2-3x-x^2+4x-3=x^2-1\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow x^2-x+2x-2=0\)
\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{-2\right\}\)
\(a,2x^3+4x^2+10x=0\\ \Leftrightarrow2x\left(x^2+2x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=0\\x^2+2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x^2+2x+1\right)+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2+4=0\left(vô..lí\right)\end{matrix}\right.\)
\(b,ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne3\\x\ne4\end{matrix}\right.\\ \dfrac{x^2-4x}{x^2-5x+4}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\\ \Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\\ \Leftrightarrow\dfrac{x}{x-1}-\dfrac{1}{2}-\dfrac{x+1}{x-3}=0\\ \Leftrightarrow\dfrac{2x\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\dfrac{2\left(x+1\right)\left(x-1\right)}{2\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2-6x}{2\left(x-1\right)\left(x-3\right)}-\dfrac{x^2-4x+3}{2\left(x-1\right)\left(x-3\right)}-\dfrac{2x^2-2}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2-6x-x^2+4x-3-2x^2+2}{2\left(x-1\right)\left(x-3\right)}=0\)
\(\Rightarrow-x^2-2x-1=0\)
\(\Leftrightarrow x^2+2x+1=0\\ \Leftrightarrow\left(x+1\right)^2=0\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\left(tm\right)\)
Giải phương trình:
a) \(\sqrt{x}+\sqrt{2-x}=\dfrac{3x^2-2x+3}{x^2+1}\)
b) \(x^3-11x^2+36x-18=4\sqrt[4]{27x-54}\)
c) \(16x^4+5=6\sqrt[3]{4x^3+x}\)
d) \(\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}=\dfrac{2}{x}\)
b, \(đk:x\ge2\)
Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0
\(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)
\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)
\(\Leftrightarrow x^3-11x^2+35x-25\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\) (*)
Có \(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)
Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5
c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)
\(\Leftrightarrow4x^3+x>0\)
Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))
\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)
\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....
d) Đk: \(x\ge\dfrac{3}{4}\)
Áp dụng bđt cosi:
\(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)
\(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)
\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)
\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)
Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)
Dấu = xảy ra khi x=1 (tm)
`a)\sqrtx+\sqrt{2-x}=(3x^2-2x+3)/(x^2+1)`
`đk:0<=x<=2`
`pt<=>sqrtx-1+\sqrt{2-x}-1=(3x^2-2x+3)/(x^2+1)-2`
`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x^2-2x+1)/(x^2+1)`
`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x-1)^2/(x^2+1)`
`<=>(x-1)((x-1)/(x^2+1)+1/(sqrt{2-x}+1)-1/(sqrtx+1))=0`
`<=>x-1=0<=>x=1`
Vậy `S={1}`
Tim x:
2x^4 - 5x^3 -27x^2 +25x +50=0
2x^4 - 5x^3 - 27x^2 +25x + 50 = 0
Giải các phương trình:
a) \(\left(x^2+2x+5\right)\left(x^2+4x\right)=0\)
b) \(\left(x^2-4x+4\right)\left(x^2-3x\right)=0\)
c) \(1,2x^3-x^2-0,2x=0\)
a.\(\left(x^2+2x+5\right)\left(x^2+4x\right)=0\)
Ta có: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\ge4>0;\forall x\)
\(\Rightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b.\(\left(x^2-4x+4\right)\left(x^2-3x\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=3\end{matrix}\right.\)
c.\(1,2x^3-x^2-0,2x=0\)
\(\Leftrightarrow x\left(1,2x^2-x-0,2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-\dfrac{1}{6}\end{matrix}\right.\)
Tim x:
2x^4 - 5x^3 -27x^2 +25x +50=0