Chứng minh rằng
\(\tan\left(x\right)\tan\left(x+\frac{\pi}{3}\right)+\tan\left(x+\frac{\pi}{3}\right)\tan\left(x+\frac{2\pi}{3}\right)+\tan\left(x\right)\tan\left(x+\frac{2\pi}{3}\right)=3\)
Chứng minh rằng:
a) \(\sin x - \cos x = \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\);
b) \(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{1 - \tan x}}{{1 + \tan x}}\;\left( {x \ne \frac{\pi }{2} + k\pi ,\;x \ne \frac{{3\pi }}{4} + k\pi ,\;k \in \mathbb{Z}} \right)\;\).
a) Ta có:
\(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x.\frac{{\sqrt 2 }}{2} + \cos x.\frac{{\sqrt 2 }}{2}} \right) = \sin x + \cos x\)
b) Ta có:
\(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{\tan \frac{\pi }{4} - \tan x}}{{1 + \tan \frac{\pi }{4}\tan x}} = \frac{{1 - \tan x}}{{1 + \tan x}}\;\)
\(\cos\left(5\Pi+x\right)+\sin\left(\frac{9\Pi}{2}-x\right)-\tan\left(\frac{3\Pi}{2}+x\right)\cot\left(\frac{3\Pi}{2}-x\right)\)
\(=cos\left(4\pi+\pi+x\right)+sin\left(4\pi+\frac{\pi}{2}-x\right)-tan\left(\pi+\frac{\pi}{2}+x\right).cot\left(\pi+\frac{\pi}{2}-x\right)\)
\(=cos\left(\pi+x\right)+sin\left(\frac{\pi}{2}-x\right)-tan\left(\frac{\pi}{2}+x\right).cot\left(\frac{\pi}{2}-x\right)\)
\(=-cosx+cosx-\left(-cotx\right).tanx\)
\(=1\)
Cho \(\sin x=\frac{-1}{3}\).
Tính P=\(cos\left(2\pi-x\right).tan\left(\pi+x\right)-tan\left(\frac{\pi}{2}-x\right).cot\left(\pi-x\right)\).
\(P=cos\left(-x\right).tanx-cotx.\left(-cotx\right)\)
\(=cosx.tanx+cot^2x=sinx+cot^2x\)
\(=sinx+\frac{1}{1+sin^2x}=-\frac{1}{3}+\frac{1}{1+\frac{1}{9}}=\frac{17}{30}\)
giải pt
a) \(tanx.tan\frac{\pi}{9}=1+tan\frac{\pi}{9}.tan\frac{\pi}{90}+tanx.tan\frac{\pi}{90};\left(-2\pi< x< 2\pi\right)\)
b) \(tan^22x+\frac{1}{cos^22x}=7;\left(0< x< 360^0\right)\)
c) \(tan^3x+\frac{1}{cos^2x}+4\sqrt{3}\left(1+tanx\right)=8+7tanx;\left(-\pi< x< \pi\right)\)
a/ \(\Leftrightarrow tanx.tan\frac{\pi}{9}-1=tan\frac{\pi}{90}\left(tanx+tan\frac{\pi}{9}\right)\)
\(\Leftrightarrow\frac{tanx+tan\frac{\pi}{9}}{1-tanx.tan\frac{\pi}{9}}=-\frac{1}{tan\frac{\pi}{90}}\)
\(\Leftrightarrow tan\left(x+\frac{\pi}{9}\right)=tan\left(\frac{23\pi}{45}\right)\)
\(\Rightarrow x+\frac{\pi}{9}=\frac{23\pi}{45}+k\pi\)
\(\Rightarrow x=\frac{2\pi}{5}+k\pi\)
Do \(-2\pi< x< 2\pi\Rightarrow-2\pi< \frac{2\pi}{5}+k\pi< 2\pi\)
\(\Rightarrow k=\left\{-2;-1;0;1;2\right\}\)
\(\Rightarrow x=\left\{-\frac{8\pi}{5};-\frac{3\pi}{5};\frac{2\pi}{5};\frac{7\pi}{5};\frac{12\pi}{5}\right\}\)
b/
ĐKXĐ: \(cos2x\ne0\)
\(\Leftrightarrow tan^22x+1+tan^22x=7\)
\(\Leftrightarrow tan^22x=3\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)
Bạn tự tìm nghiệm thuộc khoảng đã cho nhé
c/ ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)
\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)
Bạn tự tìm x thuộc khoảng đã cho
GPT
a) \(tan\left(3x-\frac{\pi}{3}\right)=-tanx\)
b) \(cot\left(x-\frac{\pi}{4}\right)=-cotx\)
c) \(cot\left(2x-\frac{3\pi}{4}\right)=tan\left(x-\frac{\pi}{6}\right)\)
d) \(cos\left(2x+\frac{\pi}{3}\right)=-cos\left(x+\frac{\pi}{4}\right)\)
a.
ĐKXĐ: ...
\(\Leftrightarrow tan\left(3x-\frac{\pi}{3}\right)=tan\left(-x\right)\)
\(\Leftrightarrow3x-\frac{\pi}{3}=-x+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)
b.
ĐKXĐ: ...
\(\Leftrightarrow cot\left(x-\frac{\pi}{4}\right)=cot\left(-x\right)\)
\(\Leftrightarrow x-\frac{\pi}{4}=-x+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}\)
c.
ĐKXĐ: ...
\(\Leftrightarrow cot\left(2x-\frac{3\pi}{4}\right)=cot\left(\frac{2\pi}{3}-x\right)\)
\(\Leftrightarrow2x-\frac{3\pi}{4}=\frac{2\pi}{3}-x+k\pi\)
\(\Leftrightarrow x=\frac{17\pi}{36}+\frac{k\pi}{3}\)
d.
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(\frac{3\pi}{4}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{3\pi}{4}-x+k2\pi\\2x+\frac{\pi}{3}=x-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)
Chứng minh rằng: \(\tan^2x+\tan^2\left(\dfrac{\pi}{3}-x\right)+\tan^2\left(\dfrac{\pi}{3}+x\right)=9\tan^23x+6\)
Giải phương trình:
a) \(tan\left(\frac{\pi}{2}sin\pi\left(x+1\right)\right)=1\)
b) \(tan\left(\frac{\pi}{3}cot\pi x\right)=\frac{1}{\sqrt{3}}\)
c) \(sin\left(\pi tan3x\right)=\frac{1}{2}\)
a/
\(\Leftrightarrow\frac{\pi}{2}sin\pi\left(x+1\right)=\frac{\pi}{4}+k\pi\)
\(\Leftrightarrow sin\pi\left(x+1\right)=\frac{1}{2}+2k\)
Do \(-1\le sin\pi\left(x+1\right)\le1\Rightarrow k=0\)
\(\Rightarrow sin\pi\left(x+1\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}\pi\left(x+1\right)=\frac{\pi}{6}+k2\pi\\\pi\left(x+1\right)=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\frac{1}{6}+2k\\x+1=\frac{5}{6}+2k\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{6}+2k\\x=-\frac{1}{6}+2k\end{matrix}\right.\)
b.
ĐKXĐ: ...
\(\Leftrightarrow\frac{\pi}{3}cot\pi x=\frac{\pi}{6}+k\pi\)
\(\Leftrightarrow cot\pi x=\frac{1}{2}+3k\)
\(\Leftrightarrow\pi x=arccot\left(\frac{1}{2}+3k\right)+n\pi\)
\(\Leftrightarrow x=\frac{1}{\pi}arccot\left(\frac{1}{2}+3k\right)+n\)
c.
\(\Leftrightarrow\left[{}\begin{matrix}\pi tan3x=\frac{\pi}{6}+k2\pi\\\pi tan3x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tan3x=\frac{1}{6}+2k\\tan3x=\frac{5}{6}+2k\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}arctan\left(\frac{1}{6}+2k\right)+\frac{n2\pi}{3}\\x=\frac{1}{3}arctan\left(\frac{5}{6}+2k\right)+\frac{n2\pi}{3}\end{matrix}\right.\)
\(\tan\left(\frac{\Pi}{3}-4x\right)+\tan\left(\frac{\Pi}{6}+x\right)+\tan2x=\cot x\)
ĐKXĐ: ...
Sử dụng công thức \(tana+tanb=\frac{sin\left(a+b\right)}{cosa.cosb}\) ta có:
\(tan\left(\frac{\pi}{3}-4x\right)+tan\left(\frac{\pi}{6}+x\right)=\frac{cosx}{sinx}-\frac{sin2x}{cos2x}\)
\(\Leftrightarrow\frac{sin\left(\frac{\pi}{2}-3x\right)}{cos\left(\frac{\pi}{3}-4x\right)cos\left(\frac{\pi}{6}+x\right)}=\frac{cos2x.cosx-sin2x.sinx}{sinx.cos2x}\)
\(\Leftrightarrow\frac{cos3x}{cos\left(\frac{\pi}{3}-4x\right)cos\left(\frac{\pi}{6}+x\right)}=\frac{cos3x}{sinx.cos2x}\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\Rightarrow...\\cos\left(\frac{\pi}{3}-4x\right)cos\left(\frac{\pi}{6}+x\right)=sinx.cos2x\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cos\left(\frac{\pi}{2}-3x\right)+cos\left(\frac{\pi}{6}-5x\right)=sin3x-sinx\)
\(\Leftrightarrow sin3x+cos\left(\frac{\pi}{6}-5x\right)=sin3x-sinx\)
\(\Leftrightarrow cos\left(\frac{\pi}{6}-5x\right)=-sinx=cos\left(\frac{\pi}{2}+x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{\pi}{6}-5x=\frac{\pi}{2}+x+k2\pi\\\frac{\pi}{6}-5x=-\frac{\pi}{2}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
Rút gọn các biểu thức sau:
1) \(A=2cosx+3cosx\left(\pi-x\right)-sin\left(\frac{7\pi}{2}-x\right)+tan\left(\frac{3\pi}{2}-x\right)\)
2) \(B=2sin\left(\frac{\pi}{2}+x\right)+sin\left(5\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)\)
\(A=2cosx-3cosx-sin\left(3\pi+\frac{\pi}{2}-x\right)+tan\left(\pi+\frac{\pi}{2}-x\right)\)
\(A=-cosx+sin\left(\frac{\pi}{2}-x\right)+tan\left(\frac{\pi}{2}-x\right)\)
\(A=-cosx+cosx+cotx=cotx\)
\(B=2cosx+sin\left(4\pi+\pi-x\right)+sin\left(2\pi-\frac{\pi}{2}+x\right)-sinx\)
\(B=2cosx+sin\left(\pi-x\right)+sin\left(-\frac{\pi}{2}+x\right)-sinx\)
\(B=2cosx+sinx-sin\left(\frac{\pi}{2}-x\right)-sinx\)
\(B=2cosx-cosx=cosx\)