\(P=cos\left(-x\right).tanx-cotx.\left(-cotx\right)\)
\(=cosx.tanx+cot^2x=sinx+cot^2x\)
\(=sinx+\frac{1}{1+sin^2x}=-\frac{1}{3}+\frac{1}{1+\frac{1}{9}}=\frac{17}{30}\)
\(P=cos\left(-x\right).tanx-cotx.\left(-cotx\right)\)
\(=cosx.tanx+cot^2x=sinx+cot^2x\)
\(=sinx+\frac{1}{1+sin^2x}=-\frac{1}{3}+\frac{1}{1+\frac{1}{9}}=\frac{17}{30}\)
1. cho sinx + cosx = 1/2 . Tính sin3x + cos3x = ?
2. P = \(\frac{1-2sin^2x}{2cot\left(\frac{\pi}{4}+x\right)cos^2\left(\frac{\pi}{4}-x\right)}\)
3. cho tanx + cotx = 2 . Tính tan2x + cot2x
rút gọn biểu thức
C=\(\sin x.\cos\left(2x+\frac{\Pi}{6}\right).\cos\left(2x-\frac{\Pi}{6}\right)+\sin3x.\sin\left(x+\frac{\Pi}{6}\right).\sin\left(x-\frac{\Pi}{6}\right)\)
Bài 1 : Cho \(\alpha\) \(\in\) \(\left(0;\frac{\pi}{2}\right)\) và tan \(\alpha\) \(=\frac{13}{8}\) \(\in\) \(\left(\frac{\pi}{2};\pi\right)\) . Tính \(sin\alpha;cot\alpha;cos\alpha\)
Cho \(\sin\alpha=\frac{-3}{5}\) ( \(\frac{3\pi}{2}< \alpha< 2\pi\))
a) Tính các giá trị lượng giác còn lại.
b) Tính \(\sin2\alpha,\cos2\alpha,tan\left(\alpha+\frac{\pi}{4}\right)\)
c) Tính \(\cos\left(\frac{\pi}{4}-2\right)\) , \(\sin\left(\alpha+\frac{\pi}{4}\right)\)
d) Tính giá trị của biểu thức:
\(M=\frac{Sin^2\alpha-C\text{os}^22\alpha}{tan\alpha}\)
a Cho \(\sin\alpha=\frac{3}{5}\) , \(0< \alpha< \frac{\pi}{2}\). Tính \(\sin\left(\alpha+\frac{\pi}{6}\right)\), \(\sin2\alpha\)
b Cho \(\sin\alpha=-\frac{4}{5}\),\(\frac{\pi}{2}< \alpha< \pi\). Tính \(\cos\left(\alpha-\frac{\pi}{3}\right)\),\(\cos2\alpha\)
Giải các phương trình sau:
a.\(2sin^3x+4cos^3x=3sinx\)
b.\(3sin^2\frac{x}{2}cos\left(\frac{3\pi}{2}+\frac{x}{2}\right)+3sin^2\frac{x}{2}cos\frac{x}{2}=sin\frac{x}{2}cos^2\frac{x}{2}+sin^2\left(\frac{x}{2}+\frac{\pi}{2}\right)\)
c.\(4sin^3x+3sin^2xcosx-sinx-cos^3x=0\)
d.sin4x-3sin 2xcos2x-4sinxcos3x-3cos4x=0
MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH CẢM ƠN
bài 1: cho hàm số y=\(\frac{2x-1}{x+1}\). Tìm tọa độ điểm thuộc đồ thị có tung độ bằng -1
bài 2: cho hình chữ nhật ABCD, có độ dài cạnh AB=a; BC=2a. Khi đó \(\left|\overrightarrow{DC}+2\overrightarrow{BC}\right|\) bằng ?
bài 3: tìm nghiệm S của bpt :\(\sqrt{-x^2+2x+24}\le2\left(x+1\right)\)
bài 4 tính P= cos\(\left(\frac{\pi}{2}-\alpha\right)+2sin\left(2018\pi+\alpha\right)\). Biết \(sin\alpha=\frac{-1}{2}\) và \(\frac{-\pi}{2}< \alpha< 0\)
Bài 1: cho góc lượng giác a thỏa mãn:
\(\sin\left(a-\frac{2019\pi}{2}\right)-cos\left(2019\pi+a\right)+sin^2\left(2019\pi+a\right)+sin^2\left(a+\frac{2019\pi}{2}\right)=0\)
các điểm biểu diễn của góc lượng giác a trên đường tròn lượng giác thuộc cung phần tư thứ mấy?
Bài 2: góc lượng giác nào sau đây có cùng cung biểu diễn trên đường tròn lượng giác với góc lượng giác \(-\frac{\pi}{3}\)
a, \(\frac{5\pi}{3}\) c, \(\frac{10\pi}{3}\)
b, \(\frac{2\pi}{3}\) d,\(\frac{7\pi}{3}\)
1.Bất pt \(2\sqrt{2x^2+5x+3}+\sqrt{2x+3}+\sqrt{x+1}+3x\ge16\) có tập nghiệm \(S=\left[a+b\sqrt{c};+\infty\right]\) với a,b là các số nguyên, c là số nguyên tố. Hỏi tổng a+b+c là bao nhiêu
a.69
b.85
c.0
d.-2
2.Rút gọn \(M=\frac{sin\left(\alpha-\beta\right)cos\beta+cos\left(\alpha-\beta\right)sin\beta}{cos\alpha}\) được M=
a.\(cos\alpha\)
b.\(sin\alpha\)
c.\(cot\alpha\)
d.\(tan\alpha\)
3.Biết \(cos^2\left(x+y\right)+cos^2y-2cosx.cosy.cos\left(x+y\right)=m.sin^2x+n.sin^2y\).Chọn khẳng định đúng
a.3m-2n=5
b.3m-2n=1
c.3m-2n=3
d.3m-2n=4