Cho \(a+b+c=0\) \(\left(a\ne0;b\ne0;c\ne0\right)\)
Cmr \(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}-3=0\)
Cho a + b + c = 0 \(\left(a\ne0,b\ne0,c\ne0\right)\). Rút gọn biểu thức:
\(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
Ta có a+b+c=0 => b+c=-a => a^2=b^2+2bc+c^2=> a^2-b^2-c^2=2bc
Tương tự ta có : b^2-c^2-a^2=2ca
c^2-a^2-b^2=2ab
=> a^2/2bc+b^2/2ca+c^2/2ab=(a^3+b^3+c^3)/2abc
=>Ta lại có a^3+b^3+c^3=(a+b+c)^3+
Cho \(a+b+c=0\left(a\ne0;b\ne0;c\ne0\right).\) Tính giá trị của biểu thức
\(A=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
Từ giả thiết ta có:
\(a+b+c=0\Rightarrow b+c=-a\Rightarrow\left(b+c\right)^2=a^2\)
\(\Rightarrow b^2+2bc+c^2=a^2\Rightarrow a^2-b^2-c^2=2bc\)
Tương tự:
\(b^2-c^2-a^2=2ca,c^2-a^2-b^2=2ab\)
Từ đây suy ra:
\(A=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{ab}=\dfrac{a^3+b^3+c^3}{2abc}\)
Mặt khác lại có:
\(a+b+c=0\Rightarrow b+c=-a\Rightarrow\left(b+c\right)^3=-a^3\)
\(\Rightarrow b^3+c^3+3bc\left(b+c\right)=-a^3\Rightarrow a^3+b^3+c^3=-3bc\left(b+c\right)\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
\(\Rightarrow A=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3}{2}\)
Ta có: a+b+c=0
<=>a=-b-c
<=>\(a^2=(-b-c)^2\)
<=>\(a^2=b^2+c^2+2bc\)
cmtt:\(b^2=a^2+c^2+2ac\)
\(c^2=a^2+b^2+2ab\)
=> A=\(\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3}{2abc}+\frac{b^3}{ 2abc}+\frac{c^3}{2abc} \)
=\(\frac{1}{2abc}(a^3+b^3+c^ 3)\)
Cm đẳng thức phụ
Với a+b+c=0=> \(a^3+b^3+c^3=3abc\)
=>A=\(\frac{3}{2} \)
cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right).CMR:c=0\)
Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\) . Chứng minh c=0
Áp dụng t/chất dãy tỉ số bằng nhau :
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1\) (bỏ dấu ngoặc)
\(\Rightarrow a+b+c=a+b-c\Rightarrow c=-c\Rightarrow2c=0\Rightarrow c=0\) (đpcm)
Bài 8 : Cho \(xyz\ne0\) thỏa mãn \(x^3y^3+y^3z^3+x^3z^3=3x^2y^2z^2\)
Bài 9 : Cho \(a+b+c=0\) tính giá trị biểu thức \(A=\left(a-b\right)c^3+\left(b-c\right)a^3+\left(c-a\right)b^3\)
Bài 10 : Cho \(x+y+z=0\) tính giá trị biểu thức \(B=\frac{x^3+y^3z^3}{-xyz}\)
Bài 11 : Cho \(a+b+c=0\left(a\ne0;b\ne0;c\ne0\right)\)tính giá trị biểu thức
\(A=\left[\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right]\left[\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right]\)
Bài 12 : Cho \(a^3+b^3+c^3=3abc\) và \(a+b+c\ne0\)tính giá trị biểu thức \(M=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
giúp tui làm bài nào cũng được nha ;;;
Bài 11 là \(a+b+c=0\)thôi nha, không có a;b;c khác 0 đâu tui bị nhầm đó, xin lỗi nhiều ;;;
Cho \(\dfrac{b+c-5}{a}=\dfrac{a+c+2}{b}=\dfrac{a+b+3}{c}=\dfrac{1}{a+b+c}\left(a,b,c\ne0,a+b+c\ne0\right)\)
Tính \(\left(a-3b\right)\left(b-c\right)\left(3c-a\right)\)
Ai giúp mik đi, mik cho 5 coin
\(\dfrac{b+c-5}{a}=\dfrac{a+c+2}{b}=\dfrac{a+b+3}{c}=\dfrac{2a+2b+2c}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}b+c-5=2a\\a+c+2=2b\\a+b+3=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c=a+5\\a+b+c=b-2\\a+b+c=c-3\end{matrix}\right.\)
Lại có \(\dfrac{1}{a+b+c}=2\Rightarrow a+b+c=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}a+5=\dfrac{1}{2}\\b-2=\dfrac{1}{2}\\c-3=\dfrac{1}{2}\end{matrix}\right.\)
Từ đó tự giải ra
Áp dụng t/c dtsbn:
\(\dfrac{b+c-5}{a}=\dfrac{a+c+2}{b}=\dfrac{a+b+3}{c}=\dfrac{b+c-5+a+c+2+a+b+3}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\left\{{}\begin{matrix}b+c-5=2a\\a+c+2=2b\\a+b+3=2c\end{matrix}\right.\)\(\left(1\right)\)
Mặt khác \(\dfrac{1}{a+b+c}=\dfrac{b+c-5}{a}=2\)\(\Rightarrow a+b+c=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=\dfrac{1}{2}-c\\a+c=\dfrac{1}{2}-b\\b+c=\dfrac{1}{2}-a\end{matrix}\right.\)\(\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-a-5=2a\\\dfrac{1}{2}-b+2=2b\\\dfrac{1}{2}-c+3=2c\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{3}{2}\\b=\dfrac{5}{6}\\c=\dfrac{7}{6}\end{matrix}\right.\)
\(\left(a-3b\right)\left(b-c\right)\left(3c-a\right)=\left(-\dfrac{3}{2}-3.\dfrac{5}{6}\right)\left(\dfrac{5}{6}-\dfrac{7}{6}\right)\left(3.\dfrac{7}{6}+\dfrac{3}{2}\right)=\dfrac{20}{3}\)
Cho \(a+b+c=a^2+b^2+c^2=1\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) \(\left(a\ne0,b\ne0,c\ne0\right)\)
Chứng minh rằng: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Lời giải:
Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$
$\Rightarrow x=at; y=bt; z=ct$. Ta có:
$(x+y+z)^2=(at+bt+ct)^2=t^2(a+b+c)^2=t^2(*)$
Mặt khác:
$x^2+y^2+z^2=(at)^2+(bt)^2+(ct)^2=t^2(a^2+b^2+c^2)=t^2(**)$
Từ $(*); (**)\Rightarrow (x+y+z)^2=x^2+y^2+z^2$ (đpcm)
cho \(\hept{\begin{cases}b+c\ne0\\c+a\ne0\\b-a\ne0\end{cases}}\)và c < 0, b > 0 thỏa mãn \(\frac{a}{b+c}-\frac{b}{c+a}+\frac{c}{b-a}=0\)CMR a < 0