Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Thị Ngát

Cho \(a+b+c=0\) \(\left(a\ne0;b\ne0;c\ne0\right)\)
Cmr \(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}-3=0\)

Bui Huyen
14 tháng 10 2019 lúc 21:53

ta thấy từ a+b+c=0 \(\Leftrightarrow a^3+b^3+c^3=3abc\)(được cm nhiều trg sách cx như trên mạng)

\(\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)

suy ra đpcm

Nguyễn Việt Hoàng
14 tháng 10 2019 lúc 22:02

Ta có : \(a+b+c=0\)

Lập phương 2 vế lên ta có :

\(\left(a+b+c\right)^3=0^3\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

mà \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

Ta lại có:

\(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}-3=0\)

\(\Rightarrow\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}-3=0\)

\(\Leftrightarrow\frac{a^3+b^3+c^3}{abc}-3=0\)

Theo chứng minh trên có : \(a^3+b^3+c^3=3abc\)

\(\Rightarrow\frac{3abc}{abc}-3=0\)

\(\Leftrightarrow3-3=0\)( đúng ) 

Vậy với \(a+b+c=0\left(a\ne0;b\ne0;c\ne0\right)\)thì \(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}-3=0\)

Nguyễn Linh Chi
14 tháng 10 2019 lúc 22:50

Đến chỗ: \(a^3+b^3+c^3=3abc\)

=> \(\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}\)

=> \(\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=3\)

=> \(\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}-3=0\) là đc rồi em nhé!

Dòng thứ 9 trở xuống là khồn đúng đâu nhé!


Các câu hỏi tương tự
Nguyễn Hưng Phát
Xem chi tiết
Sương Đặng
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
Nguyễn Trang
Xem chi tiết
Nguyen Van Huong
Xem chi tiết
dfadsfas
Xem chi tiết
Nguyễn Trung
Xem chi tiết
Đồ Ngốc
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết