Hàm số \(y=\frac{x^2-7x+8}{x^2-3x+1}\) có tập xác định \(D=R\backslash\left\{a;b\right\};a\ne b\). Tìm giá trị biểu thức \(Q=a^3+b^3-4ab\)
Tìm tập xác định của hàm số \(y = \frac{1}{{\sqrt {x - 2} }}\) là:
A. \(D = \left[ {2; + \infty } \right).\)
B. \(D = \left( {2; + \infty } \right).\)
C. \(D = \mathbb{R}\backslash \left\{ 2 \right\}.\)
D. \(D = \mathbb{R}.\)
Để hàm số \(y = \frac{1}{{\sqrt {x - 2} }}\) xác định \( \Leftrightarrow \,\,x - 2 > 0\,\, \Leftrightarrow \,\,x > 2.\)
Vậy tập xác định của hàm số là: \(D = \left( {2; + \infty } \right).\)
Chọn B.
Tìm tập xác định của mỗi hàm số sau:
a) \(y = - {x^2}\)
b) \(y = \sqrt {2 - 3x} \)
c) \(y = \frac{4}{{x + 1}}\)
d) \(y = \left\{ \begin{array}{l}1{\rm{ khi }}x \in \mathbb{Q}\\0{\rm{ khi }}x \in \mathbb{R}\backslash \mathbb{Q}\end{array} \right.\)
a) Ta thấy hàm số có nghĩa với mọi số thực nên \(D = \mathbb{R}\)
b)
Điều kiện: \(2 - 3x \ge 0 \Leftrightarrow x \le \frac{2}{3}\)
Vậy tập xác định: \(S = \left( { - \infty ;\frac{2}{3}} \right]\)
c) Điều kiện: \(x + 1 \ne 0 \Leftrightarrow x \ne - 1\)
Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)
d) Ta thấy hàm số có nghĩa với mọi \(x \in \mathbb{Q}\) và \(x \in \mathbb{R}\backslash \mathbb{Q}\) nên tập xác định: \(D = \mathbb{R}\).
Tập xác định của hàm số \(y = \frac{{\cos x}}{{\sin x - 1}}\) là
A. \(\mathbb{R}\backslash \{ k2\pi {\rm{|}}k\; \in \;\mathbb{Z}{\rm{\} }}\)
B. \(\mathbb{R}\;\backslash \left\{ {\frac{\pi }{2} + k2\pi {\rm{|}}k\; \in \;\mathbb{Z}} \right\}\)
C. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}k\; \in \;\mathbb{Z}} \right\}\)
D. \(\mathbb{R}\backslash \{ k\pi {\rm{|}}k\; \in \;\mathbb{Z}{\rm{\} }}\)
Hàm số xác định khi: \(\sin x - 1\; \ne 0\; \Leftrightarrow \sin x \ne 1\; \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi ,\;\;k \in \mathbb{Z}\)
Vậy ta chọn đáp án B
Tập xác định của hàm số \(y=\left(3^x-9\right)^{-2}\) là:
A. \(D=R\)
B. \(D=R\backslash\left\{2\right\}\)
C. \(D=\left(-\infty;2\right)\)
D. \(D=\left(2;+\infty\right)\)
Lời giải:
ĐKXĐ: $3^x-9\neq 0\Lefrightarrow 3^x\neq 9\Leftrightarrow x\neq 2$
Đáp án B.
Đề bài
Tập xác định của hàm số \(y = {\log _{0,5}}\left( {{x^2} - 2x + 1} \right)\) là:
A. \(\mathbb{R}\)
B. \(\mathbb{R}\backslash \{ 1\} \)
C. \(x \ne 0\)
D. \(x > 0\)
Điều kiện xác định: \(x^2-2x+1>0\)
Mà \(x^2-2x+1=\left(x-1\right)^2\ge0\forall x\in R\)
\(\Rightarrow x-1\ne0\\ \Leftrightarrow x\ne1\)
Vậy D = \(R/\left\{1\right\}\) ⇒ Chọn B.
ĐKXĐ: x^2-2x+1>0
=>(x-1)^2>0
=>x-1<>0
=>x<>1
=>Chọn B
Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R):
a. \(y=f\left(x\right)=\dfrac{3x+1}{x^2+2\left(m-1\right)x+m^2+3m+5}\)
b. \(y=f\left(x\right)=\sqrt{x^2+2\left(m-1\right)x+m^2+m-6}\)
c. \(y=f\left(x\right)=\dfrac{3x+5}{\sqrt{x^2-2\left(m+3\right)x+m+9}}\)
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)
Bài 1: Tìm tập hợp các giá trị của m để hàm số \(y=\sqrt{\left(m+10\right)x^2-2\left(m-2\right)x+1}\)có tập xác định D= R
Bài 2:Có bao nhiêu giá trị m nguyên để hàm số \(y=1-\sqrt{\left(m+1\right)x^2-2\left(m-1\right)x+2-2m}\)có tập xác định là R?
1. Tập hợp xác định của hàm số
y = (3x+10 )/(x^2+14x+45) là:
A.R
B.R \ {3; -5; 9}
C.R \ {-5; -9}
D. R \ {5; 9}
2.Hàm số y = √(x+7) + 2/(x^2 + 6x - 16) có tập xác định D bằng
A. [7;+∞)
B. (-7;+∞) \ {-8;2}
C. [-7; 7] \ {2}
D. [-7;+∞) \ {2}
Giúp e nha mọi người
1.Ý C
Hàm số có nghĩa khi \(x^2+14x+45\ne0\Leftrightarrow x\ne\left\{-5;-9\right\}\)
\(\Rightarrow D=R\backslash\left\{-5;-9\right\}\)
2. Ý D
Hàm số có nghĩa khi \(\left\{{}\begin{matrix}x+7\ge0\\x^2+6x-16\ne0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge-7\\x\ne\left\{2;-8\right\}\end{matrix}\right.\)
\(\Rightarrow D=\)\([-7;+ \infty) \)\(\backslash\left\{2\right\}\)
ĐK : \(x^2+14x+45\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-5\\x\ne-9\end{cases}}\)
\(TXĐ:D=R\backslash\left\{-5;-9\right\}\)
Chọn C
ĐK : \(\hept{\begin{cases}x+7\ge0\\x^2+6x-16\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-7\\x\ne-8\\x\ne2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-7\\x\ne2\end{cases}}\)
\(TXĐ:D=\left(-7;+\infty\right)\backslash\left\{2\right\}\)
Chọn D
Hàm số y= \(\dfrac{x^2-7x+8}{x^2-3x+1}\) có tập xđ D = R\{a,b}; a khác b Tính gtri biểu thức Q = \(a^3+b^3-4ab\) Mn giúp em với ạ
y xđ khi \(x^2-3x+1\ne0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{3+\sqrt{5}}{2}\\x\ne\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)
\(Q=\left(\dfrac{3-\sqrt{5}}{2}\right)^3+\left(\dfrac{3+\sqrt{5}}{2}\right)^3+3\left(\dfrac{3-\sqrt{5}}{2}+\dfrac{3+\sqrt{5}}{2}\right)\left(\dfrac{3-\sqrt{5}}{2}.\dfrac{3+\sqrt{5}}{2}\right)-13\left(\dfrac{3-\sqrt{5}}{2}.\dfrac{3+\sqrt{5}}{2}\right)\) \(=\left(\dfrac{3-\sqrt{5}}{2}+\dfrac{3+\sqrt{5}}{2}\right)^3-13\)
\(=3^3-13=27-13=14\)