Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ASOC
Xem chi tiết
Tho Vo
Xem chi tiết
SC__@
26 tháng 2 2021 lúc 11:46

Từ \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{a+b}\) (a,b \(\ne\)0)

<=> \(\dfrac{a+b}{ab}=\dfrac{1}{a+b}\)

<=> \(\left(a+b\right)^2=ab\)

Ta có: \(\dfrac{b}{a}+\dfrac{a}{b}=\dfrac{b^2+a^2}{ab}=\dfrac{\left(a+b\right)^2-2ab}{ab}=\dfrac{ab-2ab}{ab}=-\dfrac{ab}{ab}=-1\)

Big City Boy
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
10 tháng 3 2021 lúc 13:04

* Áp dụng BĐT \(\dfrac{4}{x+y}\le\dfrac{1}{x}+\dfrac{1}{y}\) với $x,y>0$ vào bài toán có :

\(\dfrac{1}{4}\cdot\left(\dfrac{4}{a+b}\right)\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\dfrac{1}{4}\left(\dfrac{4}{b+c}\right)\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\dfrac{1}{4}\left(\dfrac{4}{c+a}\right)\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế với vế các BĐT có :

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

Phạm Lợi
Xem chi tiết
đề bài khó wá
3 tháng 1 2019 lúc 18:49

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

Akai Haruma
4 tháng 1 2019 lúc 0:56

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Akai Haruma
4 tháng 1 2019 lúc 0:59

Bài 2:

Thay $1=a+b+c$ và áp dụng BĐT AM-GM ta có:

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\)

\(=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{abc}\)

\(\geq \frac{4\sqrt[4]{a.a.b.c}.4\sqrt[4]{b.a.b.c}.4\sqrt[4]{c.a.b.c}}{abc}=\frac{64abc}{abc}=64\)

Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

•长ąŦ๏Ʀเ•
Xem chi tiết
Lala Yuuki
Xem chi tiết
Trần Minh Hoàng
30 tháng 12 2020 lúc 16:16

2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)

Trần Minh Hoàng
30 tháng 12 2020 lúc 16:26

1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).

CM:....

Đặt 2x = x', 2z = z'.

Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)

\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)

\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)

 

 

Shuu Tsukiyama
Xem chi tiết
Như Dương
Xem chi tiết
Nguyễn Quang Định
20 tháng 7 2017 lúc 17:07

Đặt vế trái BĐT cần chứng minh là P

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ( Tự chứng minh BĐT này ), ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{1}{\dfrac{4}{a+b}}=\dfrac{a+b}{4}\left(1\right)\)

Tương tự: \(\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}\le\dfrac{b+c}{4}\left(2\right)\)

\(\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{c+a}{4}\left(3\right)\)

Cộng \(\left(1\right),\left(2\right),\left(3\right)\) vế theo vế, ta được:

\(P\le\dfrac{a+b+b+c+c+a}{4}=\dfrac{a+b+c}{2}\)

Dấu ''='' xảy ra khi và chỉ khi a=b=c

Big City Boy
Xem chi tiết
missing you =
14 tháng 10 2021 lúc 20:02

\(A=\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}\ge\dfrac{4}{2b}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{b+c-a+c+a-b}\ge\dfrac{4}{2c}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{4}{a+b-c+c+a-b}\ge\dfrac{4}{2a}\ge\dfrac{2}{a}\end{matrix}\right.\)

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow A\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(dấu"="xảy\) \(ra\Leftrightarrow a=b=c\)

Big City Boy
Xem chi tiết