a)A={xϵR/x≤2}; B={xϵR/x>5}
b)A={xϵR/x≤3}; B={xϵR/1≤x<5}
c)A={xϵZ/ /x/<5}; B={xϵZ/9≤\(x^2\)<26}
Hãy xác định A\(\cap\)B, A\(\cup\)B,A\B,B\A,CRA,CRB và biểu diễn chúng trên trục số.
Cho:A={xϵR|x+2≥0}
B={xϵR|5-x≥0}
Tìm A\B
Ai lm hộ mừn vs mai kt rùi
Lời giải:
\(x+2\geq 0\Leftrightarrow x\geq -2\Leftrightarrow x\in [-2;+\infty)\)
Vậy $A=[-2;+\infty)$
\(5-x\geq 0\Leftrightarrow x\leq 5\Leftrightarrow x\in (-\infty;5]\)
Vậy $B=(-\infty;5]$
\(\Rightarrow A\setminus B=(5;+\infty)\)
Cho A={ xϵR | x ≤ 25}
B={xϵR| -4<x<5}
C={ xϵR| x≤ -4}
1) Viết các tập hợp trên dưới dạng đoạn , khoảng, nửa khoảng
2) Tìm A giao B , A hợp B , A\B, B\A, A giao C, A\C, CRA, CRB,CR(A\C) và biểu diễn trên trục số
số phần tử của tập hợp : A={xϵR|(2x2 +x-4)2=4x2-4x+1 là
\(\left(2x^2+x-4\right)^2=4x^2-4x+1\)
\(\Leftrightarrow\left(2x^2+x-4\right)^2=\left(2x-1\right)^2\)
\(\Leftrightarrow\left|2x^2+x-4\right|=\left|2x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+x-4=2x-1\\2x^2+x-4=-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\\x=1\\x=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow A=\left\{-\dfrac{5}{2};-1;1;\dfrac{3}{2}\right\}\)
A có 4 phần tu
Câu 1:Tìm giá trị lớn nhất của biểu thức:P=\(\dfrac{3x^2+6x+10}{x^2+2x+3}\); (xϵR)
Câu 2:Tìm giá trị lớn nhất của biểu thức:M=\(\dfrac{2x^2+6x+7}{x^2+3x+3}\); (xϵR)
\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)
\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)
\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)
\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)
Tìm m để: (m+1)x²-2(m+1)x+4>0
∀xϵR
Đặt \(f\left(x\right)=\left(m+1\right)x^2-2\left(m+1\right)x+4\)
+) Xét \(m=-1\) \(\Rightarrow f\left(x\right)=4>0\) (Thỏa mãn)
+) Xét \(m\ne-1\)
Ta có: \(\Delta'=m^2-2m-3\)
Để \(f\left(x\right)>0\forall m\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m-3< 0\\m+1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 3\\m>-1\end{matrix}\right.\) \(\Leftrightarrow-1< m< 3\)
Như vậy \(m\in[-1;3)\)
cho hai tập hợp A={ xϵR | -1≤x <9} và B=[3;+∞)
Xác định các tập hợp 𝐴 ∪ 𝐵 và 𝐴 \ 𝐵
tìm m để \(-9< \dfrac{3x^2-mx-6}{x^2-x+1}< 6\) nghiệm đúng ∀xϵR
Có \(x^2-x+1>0;\forall x\)
\(-9< \dfrac{3x^2-mx-6}{x^2-x+1}< 6\) nghiệm đúng với mọi x
\(\Leftrightarrow-9\left(x^2-x+1\right)< 3x^2-mx-6< 6\left(x^2-x+1\right)\) nghiệm đúng với mọi x
\(\Leftrightarrow12x^2-x\left(m+9\right)+3>0\) (1) nghiệm đúng với mọi x và \(3x^2+x\left(m-6\right)+12>0\) (2) nghiệm đúng với mọi x
Từ (1) \(\Leftrightarrow\left\{{}\begin{matrix}a=12>0\left(lđ\right)\\\Delta< 0\end{matrix}\right.\)\(\Leftrightarrow m^2+18m-63< 0\) \(\Leftrightarrow m\in\left(-21;3\right)\)
Từ (2)\(\Leftrightarrow\left\{{}\begin{matrix}a=3>0\left(lđ\right)\\\Delta< 0\end{matrix}\right.\)\(\Leftrightarrow m^2-12m-108< 0\)\(\Leftrightarrow m\in\left(-6;18\right)\)
Kết hợp (1) và (2) \(\Rightarrow m\in\left(-6;3\right)\)
Điều kiện xác định của \(\sqrt{\dfrac{1}{x^2}}\) là
A. x≥0 B.x≠0 C. xϵR D. x≠-1
Chứng minh rằng:
a)3x^2-x+1>0 với mọi xϵR
b)2x-4x^2-2<0 với mọi xϵR