cho a,b,c t/m a,b,c \(\in\)(0;2) và a+b+c=3
tìm max của P= a^2 +b^2 +c^2
Cho \(A=\left\{8;45\right\},B=\left\{15;4\right\}\)
a) Tìm tập hợp C các số tự nhiên \(x=a+b\) sao cho \(a\in A,b\in B\)
b) Tìm tập hợp D các số tự nhiên \(x=a-b\) sao cho \(a\in A,b\in B\)
c) Tìm tập hợp E các số tự nhiên \(x=a.b\) sao cho \(a\in A,b\in B\)
d) Tìm tập hợp G các số tự nhiên \(x\) sao cho \(a=b\) và \(a\in A,b\in B\)
a, Ta có:\(8+15=23;8+4=12;45+15=60;45+4=49\)
\(\Rightarrow\) Các tập hợp của C là : \(\left\{12;23;49;60\right\}\)
b, Ta có:
\(8-4=4;45-15=30;45-4=41\)
\(\Rightarrow\) Các tập hợp của D là : \(\left\{4;30;41\right\}\)
c, Ta có:
\(8.15=120;8.4=32;45.15=675;45.4=180\)
\(\Rightarrow\) Các tập hợp của E là : \(\left\{32;120;180;675\right\}\)
d, Ta có:
\(8:4=2;45:15=3\)
\(\Rightarrow\) Các tập hợp của G là: \(\left\{2;3\right\}\)
Tìm ( x, y) \(\in\) z biết xy - 2x + y + 1 =0
Cho M= (-a+b)-(b+c-a)+(c-a)
Biết a,b,c \(\in\)z, a<0. c/m M>0
Cho \(a^2\)=\(b^2+c^2\)
\(b^2=2c^2-8\)
Tính M= \(5a^2-7b^2-c^2\)
Cho a= \(8^{2017}.25^{3024}\)
hỏi a có bao nhiêu chữ số
Cho A={x\(\in Z\) \(|2x^2+3x-5=0\)}
B={\(x\in R|x^2+x-m=0\)}
C={\(x\in R|\frac{x^2-n}{x+1}=0\)}
a) Tìm m để B=\(\varnothing\); A \(\subset B\)
b) Tìm n để C\(\ne\varnothing;C=A\)
Bài 1: Cho a,b,c >0 t/m: abc=1
CMR: \(\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le1\)
Bài 2: Cho a,b,c >0 t/m a+b+c=1
CMR: \(\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\ge6\)
Bài 3: Cho a,b,c >0 t/m abc=1
CMR: \(\dfrac{ab}{a^4+b^4+ab}+\dfrac{bc}{b^4+c^4+bc}+\dfrac{ac}{c^4+a^4+ac}\le1\)
Cho \(C=\dfrac{n+1}{n-3}\left(n\in Z\right)\)
a) Tìm n để \(2C-1\in Z\)
b) Tìm n để C tối giản
c) Tìm n để C > 0; C < 0; C = 0; C có nghĩa, C vô nghĩa
a: \(A=2\cdot C-1=\dfrac{2n+2}{n-3}-1=\dfrac{2n+2-n+3}{n-3}=\dfrac{n+5}{n-3}\)
Để A là số nguyên thì \(n-3+8⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1;11;-5\right\}\)
c: Để C>0 thì \(\dfrac{n+1}{n-3}>0\)
=>n>3 hoặc n<-1
Để C<0 thì \(\dfrac{n+1}{n-3}< 0\)
hay -1<n<3
Cho a,b,c>0 t/m a+b+c=1.
C/m \(b+c\ge16abc\)
\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Rightarrow b+c=\left(b+c\right).1\ge4a\left(b+c\right)\left(b+c\right)=4a\left(b+c\right)^2\ge4a.4bc=16abc\) (đpcm)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a+b+c=1\\a=b+c\\b=c\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{4};\dfrac{1}{4}\right)\)
cho a,b,c khác 0 và x,y,z t/m: a+b+c=x+y+z=x/a+y/b+z/c=0 C/m a^2x + b^2y + c^2z =0
Cho \(A=\left\{x\in N|11-3x>0\right\}\)
\(B=\left\{x\in Z|\left|x\right|\le3\right\}\)
a, Tìm \(A\cup B,A\cap B,C_BA,\) A \ B, B \ A.
b, Tìm X là tập các số nguyên thỏa mãn \(A\subset X\subset B\)
\(11-3x>0\Leftrightarrow x< \frac{11}{3}\Rightarrow A=\left\{0;1;2;3\right\}\)
\(B=\left\{-3;-2;-1;0;1;2;3\right\}\)
\(A\cup B=B=...\)
\(A\cap B=A=...\)
\(C_BA=\left\{-3;-2;-1\right\}\)
\(A\backslash B=\varnothing\)
\(B\backslash A=\left\{-3;-2;-1\right\}\)
\(X=A;\left\{-3;0;1;2;3\right\};\left\{-2;0;1;2;3\right\};\left\{-1;0;1;2;3\right\}\) ; \(\left\{-3;-2;0;1;2;3\right\};\left\{-3;-1;0;1;2;3\right\};\left\{-2;-1;0;1;2;3\right\};B\)
a, cho a,b,c \(\in\) R và a,b,c \(\ne\) 0 thỏa mãn \(b^2=ac\) . CMR : \(\dfrac{a}{c}=\dfrac{\left(a+2013b\right)^2}{\left(b+2013c\right)^2}\)
b, cho cá số a,b,c khác 0 thỏa mãn \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Tính M=\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
b)\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Ta có:
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}\) và \(\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
\(\Rightarrow1+\dfrac{a+b}{c}=1+\dfrac{b+c}{a}\)và \(1+\dfrac{b+c}{a}=1 +\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{c}{c}+\dfrac{a+b}{c}=\dfrac{a}{a}+\dfrac{b+c}{a}\)và \(\dfrac{a}{a}+\dfrac{b+c}{a}=\dfrac{b}{b}+\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}\)và \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{a+b+c}{a}=0\) \(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)
và \(\dfrac{a+b+c}{a}-\dfrac{a+b+c}{b}=0\)
\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)
+) Vì a,b,c đôi một khác 0
\(\Rightarrow a+b+c=0\)
\(\rightarrow a+b=\left(-c\right)\)
\(\rightarrow a+c=\left(-b\right)\)
\(\rightarrow b+c=\left(-a\right)\)
+) Ta có:
\(M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{a}\right)\cdot\left(\dfrac{c+a}{c}\right)\)
\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}\)
\(=\left(-1\right)\)
cho a>0, b>0,c >0. Tìm GTNN của (a+b+c).(1/a+1/b+1/c)
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right)\dfrac{9}{a+b+c}=9\)