\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Rightarrow b+c=\left(b+c\right).1\ge4a\left(b+c\right)\left(b+c\right)=4a\left(b+c\right)^2\ge4a.4bc=16abc\) (đpcm)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a+b+c=1\\a=b+c\\b=c\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{4};\dfrac{1}{4}\right)\)