Áp dụng BĐT AM - GM ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b+ab}{2}\left(1\right)\)
Chứng minh tương tự ta có:
\(\frac{b+1}{c^2+1}\ge b+1-\frac{c+bc}{2}\left(2\right)\)
\(\frac{c+1}{a^2+1}\ge c+1-\frac{a+ca}{2}\left(3\right)\)
Từ: \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}\)
Lại có: \(a^2+b^2+c^2\ge ab+bc+ca\)
Hay: \(3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2=3^2=9\)
Vì vậy: \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}=\frac{3}{2}+3-\frac{9}{6}=3\)
\(\Rightarrow\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
\(\Rightarrow Min_P=3\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
* Dũng kỹ thuật Cô-si ngược dấu
\(P=\left(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\right)+\left(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right)\)
+ \(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}=a-\frac{ab^2}{b^2+1}+b-\frac{bc^2}{c^2+1}+c-\frac{ca^2}{a^2+1}\)
\(\ge3-\left(\frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{2a}\right)=3-\frac{ab+bc+ca}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c=1\)
+ \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}=1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\ge3-\left(\frac{a^2}{2a}+\frac{b^2}{2b}+\frac{c^2}{2c}\right)=3-\frac{a+b+c}{2}=\frac{3}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c=1\)
Do đó: \(P\ge3\). Dấu "=" \(\Leftrightarrow a=b=c=1\)