Violympic toán 9

Thanh Thảoo

1 . Cho a,b,c > 0 chứng minh rằng : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\)

2 . Cho x , y , z > 0 thỏa mãn : \(x+y+z=2\)

Tìm GTNN của \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

3 . Cho các sô dương a , b , c biết \(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\le1\)

4 . Tim giá trị nhỏ nhất của biểu thức : \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)

Hoàng Thị Ánh Phương
26 tháng 2 2020 lúc 17:00

Bài 1

Cho a , b , c > 0 . CM : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}\left(1\right)\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)\le\frac{a\left(a+b\right)\left(b+c\right)}{b}+\frac{b\left(a+b\right)\left(b+c\right)}{c}+\frac{c\left(a+b\right)\left(b+c\right)}{a}\)

\(=\frac{a^2c}{b}+a^2+ab+ac+\frac{b^2\left(a+b\right)}{c}+b^2+ab+c^2+bc+\frac{cb\left(b+c\right)}{a}\)

Mặt khác : \(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)=a^2+ac+c^2+3b^2+3ab+3bc\)

Do đó ta cần chứng minh :

\(\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}\ge2b^2+2bc+ab\left(2\right)\)

\(VT=\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}=\frac{1}{2}\left(\frac{a^2c}{b}+\frac{b^3}{c}\right)+\frac{1}{2}\left(\frac{a^2c}{b}+\frac{c^2b}{a}\right)+\frac{1}{2}\left(\frac{b^3}{c}+\frac{c^2b}{a}\right)+b^2\left(\frac{c}{a}+\frac{a}{c}\right)\)

\(\ge ab+\sqrt{ac^3}+\sqrt{\frac{b^4c}{a}}+2b^2\ge ab+2bc+2b^2=VP\)

Dấu " = " xảy ra khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
Hoàng Thị Ánh Phương
26 tháng 2 2020 lúc 17:11

Bài 2 :

Vì x , y , z > 0 ta có :

Áp dụng BĐT Cô - si đối với 2 số dương \(\frac{x^2}{y+z}\)\(\frac{y+z}{4}\)

ta được :

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\left(1\right)\) .

Tương tự ta cũng có :
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\left(2\right);\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\left(3\right)\)

Cộng theo vế (1) , (2) và (3) ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\Rightarrow P\ge\left(x+xy+z\right)-\frac{x+y+z}{2}=1\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

Vậy \(P=1\Leftrightarrow x=y=z=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Hoàng Thị Ánh Phương
26 tháng 2 2020 lúc 17:24

Bài 3 :

Theo gt \(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\le1\Rightarrow\frac{b}{1+b}+\frac{c}{1+c}\le1-\frac{a}{1+a}=\frac{1}{a+1}\)

Do b > 0 ; c>0 . Nên theo bất đẳng thức Co - si ta có :
\(\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}>0\Rightarrow\frac{1}{1+a}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}>0\left(1\right)\)

Chứng minh tương tự ta có :

\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}>0\left(2\right)\)

\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}>0\left(3\right)\)

Từ (1) , (2) và (3) ta chứng minh được :

\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\Rightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\Rightarrowđpcm\)

Bình luận (0)
 Khách vãng lai đã xóa
Hoàng Thị Ánh Phương
26 tháng 2 2020 lúc 17:13

Bài 3 : thiếu CM nhé bổ sung đi ạ

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Hoàng Long
2 tháng 2 2020 lúc 20:04
https://i.imgur.com/2D7p2bo.png
Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
I love English
Xem chi tiết
bach nhac lam
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
bach nhac lam
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Vyy Vyy
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết