Cho các số nguyên a, b, c khác ) thoả mãn điều kiện : \(\dfrac{5b+2c\left(4+c^6\right)}{a+b+c}=1.\) Chứng minh rằng: \(a^7+3b^7-2c\) chia hết cho 7.
Cho a , b , c là các số thực dương thỏa mãn : \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2015\)
Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho các số thực dương a,b,c thỏa mãn ab+bc+ca=28
Tìm GTLN của \(P=\dfrac{5a+5b+2c}{\sqrt{12\left(a^2+28\right)}+\sqrt{12\left(b^2+28\right)}+\sqrt{12\left(c^2+28\right)}}\)
Cho a,b,c \(\in\) R; 0 < a,b,c < 1 và ab + bc + ca = 1
Tìm GTNN: \(A=\dfrac{a^2\left(1-2b\right)}{b}+\dfrac{b^2\left(1-2c\right)}{c}+\dfrac{c^2\left(1-2a\right)}{a}\)
Cho a,b,c thỏa mãn ab+ac+bc=a+b+c+abc ; 3+ab ≠ 2a+b; 3+bc ≠ 2b+c;3+ac ≠2c+a.
C/M: \(\dfrac{1}{3+ab-\left(2a+b\right)}+\dfrac{1}{3+bc-\left(2b+c\right)}+\dfrac{1}{3+ac-\left(2c+a\right)}=1\)
Cho a,b,c >0 và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\) Tìm giá trị lớn nhất của:
\(P=\dfrac{1}{\left(2a+b+c\right)^2}+\dfrac{1}{\left(2b+c+a\right)^2}+\dfrac{1}{\left(2c+a+b\right)^2}\)
Cho đa thức: \(P\left(x\right)=ax^2+bx+c\). Biết P(x)>0 với mọi x thuộc R và a>0. CM: \(\dfrac{5a-3b+2c}{a-b+c}>1\)
Cho đa thức: \(P\left(x\right)=ax^2+bx+c\). Biết P(x)>0 với mọi x thuộc R và a>0.CM: \(\dfrac{5a-3b+2c}{a-b+c}>1\)
cho \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2017\)
tìm max \(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)