Lời giải:
Đặt \(A=a^7+3b^7-2c\)
Ta có: \(\frac{5b+2c(4+c^6)}{a+b+c}=1\)
\(\Leftrightarrow 5b+2c(4+c^6)=a+b+c\)
\(\Leftrightarrow 4b+7c+2c^7=a\)
----------------------------------------
Ta có bổ đề sau: Với mọi số tự nhiên $n$ nào đó thì \(n^7\equiv n\pmod 7\)
Chứng minh :
Thật vậy.
Với \(n\equiv 0\pmod 7\) thì \(n^7\equiv 0\equiv n\pmod 7\)
Với \(n\not\equiv 0\pmod 7\) hay \((n,7)=1\). Áp dụng định lý Fermat nhỏ ta có:
\(n^6\equiv 1\pmod 7\Rightarrow n^7\equiv n\pmod 7\)
Ta có đpcm.
--------------------
Quay trở lại bài toán:
Áp dụng bổ đề trên ta có:
\(A=a^7+3b^7-2c\equiv a+3b-2c^7\pmod 7\)
\(\Leftrightarrow A\equiv 4b+7c+2c^7+3b-2c^7\pmod 7\)
\(\Leftrightarrow A\equiv 7b+7c\equiv 0\pmod 7\)
Hay \(A\vdots 7\)
Chứng minh hoàn tất.